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Abstract

We put forward a new system of hyperintensional propositional logic, which
can be summarily described as extending second-order propositional modal logic
by the addition of four specifically hyperintensional connections: propositional
identity, propositional existence, a notion of propositional constituency, and a
notion of grounding. We set up the foundations of the system (syntax and se-
mantics, both of which include some distinctive features); pursue various in-
ternal developments (definitions, principles); and investigate some fragments of
the full system.

Keywords: hyperintensional logic, hyperintensional propositions, ground, constituency,
propositional identity, propositional existence, truthmaking, entailment.

Contents

1 Introduction 1
2 Basic notions: Syntax 7
3 Basic notions: Semantics 9
4 Definitions: (g, 0)-free notions 16
5 Definitions: Stoichiological notions 19
6 Definitions: Truthmaking, entailment, etc. 24
7 Definitions: Ground-theoretic notions 30
8 Principles: (g, 0)-free principles 32

9 Principles: Stoichiological principles 34



2 R. BATCHELOR

10 Principles: Truthmaking, entailment, etc. 36
11 Principles: Classical ground-theoretic principles 41
12 Principles: Modal ground-theoretic principles 42
13 Conditions on frames 44
14 Weak fragments: Propositional identity 47
15 Weak fragments: Propositional existence 54
References 60

1 Introduction

The present work sets up and develops a system of ‘Hyperintensional Propositional
Logic’ —i.e. a formal theory concerned with hyperintensional propositions and logi-
cal connections between them. The system can be summarily described as extending
propositional modal logic (S5) with propositional quantifiers by the addition of some
specifically hyperintensional connections: propositional identity, propositional exis-
tence, a notion of propositional constituency, and a notion of grounding. — We will
present a formal (set-theoretic) semantics for this system; and will pursue various in-
ternal (as opposed to meta-theoretical) developments (definitions, principles). We will
investigate not only the full system, but also various fragments of special interest.

The full system HPL (as we call it), and even some of its more conspicuous strong
fragments (e.g. without modality, or without propositional existence), have very rich
conceptual resources, comparable e.g. to the resources of standard set theory. — In-
deed one of the main motivations for this work was precisely the idea of constructing
an ultra-comprehensive apparatus — a kind of characteristica universalis (as far as the
subject of hyperintensional propositional logic goes) (although this description should
certainly be taken with many pinches of salt). — Accordingly, as with set theory, there
is here a practically unlimited space for internal (‘intra-theoretical’, as opposed to
‘meta-theoretical’) developments: i.e. one defines notions of increasing complexity,
and one proves propositions, also of increasing complexity, concerning such notions;
subfields are naturally formed, then sub-subfields and so on. — The internal develop-
ments of Hyperintensional Propositional Logic given below are of a relatively rudi-
mentary character and consist only of some initial steps into this unlimited space. I
would be happy to see this carried further in future by workers with a taste for such
‘mathematical metaphysics’.
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— We add here a few general remarks before proceeding to ‘official theorizing’ in
the next section.

(1) On primitive notions.

(1.1) We use a single classical-propositional-logic primitive connective, viz. the
‘neconjunction’ connective N, with N(¢1,...,@n) supposed to be equivalent to
=A(®Q1,-..,9n). (Hence the neologism ‘neconjunction’, from ‘negation of conjunc-
tion’.) This is taken as ‘multigrade’, with the n above > 0. — This procedure permits
the greatest possible simplicity for our semantical scheme, where the construction of
a set from its elements will serve to ‘model’ the construction of a ‘neconjunctive’
proposition from its ‘neconjuncts’. (The use of N here was suggested of course by
the notation in Wittgenstein’s Tractatus. Note however that there N stands rather for
‘nedisjunction’ [or equivalently ‘con-negation’].)

(1.2) We will understand the propositional quantifiers in a ‘generalistic’ rather
than ‘absolutistic’ sense: i.e. as ranging over some ‘suitably closed’ domain of hyper-
intensional propositions, rather than over ‘absolutely all’ hyperintensional proposi-
tions. Thus e.g., as in standard S5 with propositional quantifiers (viz. what Fine 1970
calls S57+), such a formula as Ap(p A —-Op) will not count as valid here. (Much as
dx3dy-(x = y) does not count as valid in general predicate logic.)

(1.3) Propositional existence (E). We think here of the (hyperintensional) propo-
sition as a complex object the existence of which is tantamount to the existence of
its constituents. Thus the existence of an atomic proposition aRb amounts to the ex-
istence of a and of R and of b. — This we cannot say in our HPL, since we have no
means to speak of the constituents of atomic propositions. But we have also that e.g.
the existence of the molecular proposition N(p, q) amounts in effect to the existence
of p and of q; and this we can say in HPL: EN(p, q) < (Ep A Eq) will be a valid
formula of HPL.

(1.4) Immediate propositional constituency (¢). Like any other complexes, propo-
sitions have their constituents, i.e. objects which enter into the constitution of the
proposition. There are the immediate constituents, then the immediate constituents of
immediate constituents, and so on. E.g. a is an immediate constituent of aRb, which
in turn is an immediate constituent of N(aRb); so a is a constituent of N(aRb) though
not an immediate constituent. — Again, in HPL we have no means to speak of non-
propositions; so our ¢ stands for propositional immediate constituency in a double
sense: we must have a proposition ‘on the right’ and ‘on the left’. But still there is
much we can say (p € N(p), N(p) e N(N(p)), =(p € N(N(p))), etc.).
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(1.5) Immediate grounding (0). Here the restriction to propositions is really no re-
striction, since immediate grounding in the intended sense already only relates propo-
sitions. (Indeed only relates facts [i.e. true propositions]. But still it is of course per-
fectly appropriate to call it a propositional connection. Necessity too for that matter
only holds of facts, but is no less naturally called a propositional connection for that.)
A typical example of valid formula here is: p — p 6 N(N(p)). Our 0 will always take
a single formula on the left (as well as on the right): it corresponds to what is often
called in the grounding literature partial (as opposed to full) (immediate) grounding.
(I have serious doubts as to whether the idea of full grounding is ultimately in good
standing. But here is not the place to go into a discussion of this. — Unfortunately
full grounding is what tends to have ‘center stage’ in the recent literature on logic of
ground, including the works of Fine [2012a, b] and Correia [2010, 2014, 2017, etc.].
The paper Schnieder 2011 is a laudable exception.)

(On ground-theory see further Batchelor 2010; and on the theory of constituency,
or as I call it ‘Stoichiology’, Batchelor 2013. The present work is in some respects
a continuation of these earlier papers. I do not here presuppose familiarity with the
earlier papers; but they should certainly also be studied by readers who wish to obtain
a fuller appreciation of my ideas on these matters.)

(2) On the syntax of HPL. We distinguish sharply between expressions which
stand for methods of formation of compound propositions and expressions which
serve to make statements about propositions, where such statements themselves may
or may not correspond to propositions in our universe of propositions, and if they do
we may or may not know what these propositions are. The former may be called for-
mative expressions, and the latter enunciative expressions. — In our language for HPL.
we take the neconjunction symbol N as the only primitive formative expression; all
other (constant) primitive expressions we take as purely enunciative. (Even N itself is
used only enunciatively if applied to formulas involving enunciative expressions.)

Take e.g. propositional identity. Everybody will agree that the formula, say,
P=q > q=p

should count as valid. For if the statement that p is identical with q is correct, then
so is also of course the statement that q is identical with p. This does not depend on
any specificities of different views as to the ultimate nature of the concept of propo-
sitional identity, nor on views as to the constitution of putative propositional-identity
propositions, nor even on there being such propositions at all. — But now take e.g.

=(p=q) — ~((p=p)=(Qq=0q).
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Should this count as valid? That now will depend on specificities of views as to the
nature of identity. If for instance one holds a primitivistic view on identity — that it is
a basic, simple notion —, then one will no doubt think that the above formula is always
true. (Even two primitivists might however disagree on whether e.g. the formula
(p = q9) = (q = p) should count as valid. — Note incidentally that the curious restricted
symmetry principle (p = q) — ((p = q) = (@ = p)) is much less questionable,
having a droll proof by two applications of a principle of substitution of identicals.)
But if on the other hand one thinks, as Ramsey did, that identity should be given a
Leibnizian definition in terms of possession of the same ‘properties’ in the sense of
‘propositional functions in extension’, and that the universal property-quantification
is really the conjunction of its instances, then one will not think that the above formula
is always true. Indeed one will think that the formula

P=p=@=9

is always true.

Similar considerations apply to necessity (e.g., again, should =(p = q) — —(0Op =
0q) count as valid?), to grounding (including as special case the now much-debated
issues of ‘iterated ground’), etc.

In all such cases I would say that: (i) disputes are typically fruitless if they try to
proceed independently of theories as to the ultimate nature of the notions in question
(identity, modality, grounding, or whatever it may be); (ii) under assumption of a spe-
cific such theory, the disputed question will usually have a straightforward answer;
(iii) at the present stage of inquiry, all such theories must be considered uncertain and
tentative; and yet (iv) that it should make sense in some way to say that this is identi-
cal with that, that it is necessary that so-and-so, etc. — this is, at least comparatively,
much more certain; and so finally (v) it seems then advisable at present to theorize
under the assumption only of enunciative significance of such resources (or at any
rate to clearly separate theorizing which proceeds only under such weak enunciative
assumptions from more speculative theorizing under bolder formative assumptions).

So this will be our procedure in the syntax of HPL. Such expressions as say

(Pp=p) =(@=9.,0p =0q, p 6 (p 6NN NV¥p(p) 6 N(Vp(p)), EEp, p ¢
(q e 1), etc. — these will not count as well-formed formulas.

(3) On the semantics of HPL. In the familiar possible world semantics for S5, or
S5 with propositional quantifiers, we use ‘flat’ sets, i.e. subsets of a non-empty set W,
to ‘model’ the idea of intensional propositions (‘sets of worlds’). Thus e.g. the nega-
tion, conjunction, disjunction etc. of intensional propositions get modelled by the flat
operations of complementation, intersection, union etc. of subsets of W. — Now the
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basic idea in our semantics for HPL is to use full ‘hierarchical’ sets, i.e. sets built
up from a basic stock of ‘atoms’ in the usual ‘cumulative’ way (with sets of atoms,
sets of sets of atoms, sets of some atoms and some sets of atoms, etc. etc.), to model
the idea of hyperintensional propositions built by neconjunction from some atomic
propositions. Thus the neconjunction of certain propositions corresponds simply to
the set of the sets-or-atoms corresponding to the given propositions. — After this the
truth or falsity of propositions, the existence of propositions, and modality can be rel-
atively easily dealt with by natural additions to the basic semantic apparatus.

(Someone might complain that this semantics models hyperintensional proposi-
tions so closely by hierarchical sets that this HPL becomes little more than set theory
in disguise. But just the same point can be made for the possible world semantics for
basic modal logic: S5 then, one would say, is some rudimentary, ‘flat’ set theory in
disguise. — In both cases the friend of modality and propositions can give the same
answer: that the formal semantics in question exploits a systematic structural sim-
ilarity between modality/propositions and set-theoretic constructions; that this need
not be taken to mean that the theory of propositions is set theory ‘in disguise’; and
that however the skeptic about propositions and modality can accept our theory since
literally [though not in spirit] it involves nothing but ordinary extensional set theory,
and so in this sense one might think that the set-theoretic semantics provides actually
a kind of vindication of proposition theory. — In any case, I should like to emphasize
that our semantics for HPL is in no worse [nor better] standing in these respects than
the usual possible world semantics for basic modal logic.)

Underlying the whole construction is, of course, a predilection for an atomistic
metaphysics where all propositions are truth-functions of atomic propositions. This
does not mean however that readers who do not share this predilection ought then to
immediately throw away the paper in disgust. For, first, it is no doubt interesting to see
where this predilection might lead, at least in the spirit of exploratory, hypothetico-
deductive investigations. In particular, I think it is remarkable how much enunciation
is possible here with at the same time so little formation. Secondly, the theory de-
veloped here, and in particular our semantical scheme, may well be useful as a start-
ing point for extensions corresponding to richer apparatuses of supposed methods of
propositional formation. And thirdly, dependence on this atomistic scheme is far from
ubiquitous in the present work. Often we need only the existence of truth-functional
compounds (not also the non-existence of any other compounds); and often not even
that.

(4) Higher-order resources. A neconjunction ‘does’ two different things. First,
it collects certain objects (propositions) into a compound object (the neconjunctive
proposition) having those objects as immediate constituents (much like sets are sup-
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posed to do). And secondly, it ‘says’ something — it has a kind of ‘import’ or ‘sig-
nificance’ (and thus will be true, or false). (The set in contrast just collects some
objects into a compound and that’s it. There is nothing corresponding to the import
of a proposition, and accordingly nothing corresponding to the true/false dichotomy.
— The proposition, we might say, is like a talking set.) — Now by considering necon-
junctions in their ‘purely collecting capacity’ (where the import, although there, is
unimportant, or the significance insignificant, or the talking unheard or unheeded),
we obtain a straightforward simulation of set-theoretic resources within the language
of HPL — namely: instead of something like ‘There is set Ss.t. ...p€ S ...’, we
can use ‘There is proposition g s.t. ... p€ q ... . (There are also somewhat similar
ground-theoretic simulations in terms of 6.)

This corresponds of course to relatively ‘small’ sets — e.g. we cannot collect all the
propositions of our universe into a new proposition still inside our universe (the for-
mula =dpVYq(q € p) is valid in HPL). To obtain something corresponding to arbitrary
sets of propositions we would need to add further resources to our formal language.
Perhaps the most obvious addition would be a stock of set variables (for arbitrary sets
of propositions) and the membership-sign € (so now ASYp(p € S) would be a valid
formula). But this seems unpleasantly ‘hybrid’: we may just as well (‘technically’),
and more purely (‘conceptually’), add instead variables for arbitrary neconjunctions
of propositions in our basic universe. We can then say that there is e.g. a neconjunction
of all ‘propositions’ only it is not itself a ‘proposition’ but (say) a ‘proper statement’.
We would have a ‘proposition-statement theory’ along similar lines to the more fa-
miliar case of ‘set-class theory’. We can even consider such a formula as dp(p VvV —p)
as now representing a ‘statement’ in our (extended) universe, viz. the disjunction of
all propositions of the form p V —p, i.e. the neconjunction of all propositions of the
form —(p V —p). However even Yp(p V —p) is already ‘problematic’, since the necon-
junction of all propositions of the form p Vv —p, being a ‘proper statement’, cannot be
‘neconjoined’ (negated). — This leads us to a third alternative here, viz.: again we add
‘statement-variables’ to the language, but now interpret them in terms of not just one
extra level of arbitrary neconjunctions ‘on top of” the basic universe of propositions,
but a denumerable sequence of extra levels (an n-th level for each n > 1). Then each
formula of classical propositional logic with propositional quantifiers will correspond
either to a proposition or to a proper statement (w.r.t. a given assignment of proposi-
tional values to its free propositional variables).

Since all these alternatives (and other obvious variations on them) strike me as
somewhat artificial, I will stick here with the basic version of HPL as just proposition
theory. It should be clear however that my semantical scheme for HPL is immediately
adaptable to these richer languages.
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2 Basic notions: Syntax

We give now the basic syntactic notions for our system of Hyperintensional Proposi-
tional Logic (HPL). — The basic symbols of the system are (besides parentheses and
the comma):

Propositional variables: p, q, 1, s, p’, ¢/, ...
Neconjunction: N
Metaphysical necessity: O
Propositional quantifier: ¥
Propositional identity: =
Propositional existence: E
Immediate propositional constituency: €
Immediate ground: 6
— What we will call transparent formulas are defined by the clauses: (i) proposi-
tional variables are transparent formulas; and (ii) if X ... X, (n > 0) are transparent
formulas then so is N(X{, ..., Xp).
We will use A, B, C, ... as metavariables for transparent formulas.
The general notion of formula is then defined by the clauses:

(1) Transparent formulas are formulas.

(2) If A and B are transparent formulas, then A = B, EA, A¢ B and A 6 B are
formulas.

B IfX ... Xn, Y (n > 0) are formulas, then so are N(X1, ..., Xy), OY and Vp(Y)
(for any propositional variable p).

— We will use ¢, y, ¥, . . . as metavariables for arbitrary formulas.
We say that a formula is an opaque formula if it is not a transparent formula.

The intuitive idea here is roughly that transparent formulas are formulas where
we know what is the corresponding hyperintensional proposition (given assignment of
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hyperintensional propositions to the variables), whereas opaque formulas are formulas
where we do not assume that we know what (if any) is the corresponding hyperinten-
sional proposition, although we do assume that a meaningful statement is being made.

Remark. Fine (2012a, b) has influentially distinguished between the ‘pure logic
of ground’, which includes only general laws of ground (transitivity, irreflexity, etc.
etc.) independent from systematic grounding connections involving specific meth-
ods of formation of logically complex propositions, and the ‘impure logic of ground’,
which does treat also of such connections (so we can here say that a true proposition
grounds its double negation, or a disjunction of which it is disjunct, etc. etc.). — Our
HPL is of course an ‘impure’ logic of ground, constituency etc. The formulas of the
‘pure’ fragment of HPL can be defined as in the above definition of formula only
replacing ‘transparent formulas’ in clauses (1) and (2) by ‘propositional variables’.
(In Fine’s own paper [2012b] on pure logic of ground, the outer conceptual apparatus
[beyond the inner formation of ‘atomic’ grounding statements] is very rudimentary.
But of course this is not required by purity itself.)

The ‘pure fragment’ of HPL can of course be further ‘fragmented’ by omission
of primitives. Thus e.g. omitting E and ¢ (and if desired = which is definable from
the other resources) gives a ‘pure (modal) logic of ground’; and omitting further O a
‘pure (classical) logic of ground’. Or again, omitting € and 6 gives a ‘pure logic of
propositional identity and existence’ — very close to the formal theory of Fine 1980.

(In Fine 1980 propositional variables occupy ‘name position” and one has a “first-
order modal language’ of familiar kind; there is also the addition of a propositional-
truth predicate so that we can ‘get off the ground’ [not just with identity or existence]
and write say Tp — Tp, the simple p — p not being of course a well-formed formula
there. Still, there are straightforward translations back and forth between the two lan-
guages, as indeed Fine himself in effect observes [pp. 159-160]. Even our full ‘im-
pure’ use of transparent formulas [rather than just variables] can be reproduced in the
“first-order theory’ framework by addition of ‘function-symbols’ for neconjunction:
either a single ‘multigrade’ function-symbol forming a term from any n (> 0) terms,
or alternatively an n-ary neconjunction function-symbol for each n (> 0). — Indeed
this correspondence may perhaps make more easily understandable to some readers
the idea of our distinction between transparent formulas [corresponding to terms in
the first-order language] and opaque formulas [corresponding roughly to formulas in
the first-order language].) -
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3 Basic notions: Semantics

We define four notions of ‘frame’: basic frames, suitable to HPL without modality
and without propositional existence; modal frames, suitable to HPL with modality but
without propositional existence; existential frames, suitable to HPL with propositional
existence but without modality; and full frames, suitable to full HPL.

We begin by defining a notion of ‘Zermelo universe’, which will be involved in
all four kinds of frame.

A Zermelo universe is a pair (At, Mol) where:
(1) At (‘atoms’) is an arbitrary (not necessarily non-empty) set of non-sets.

(2) Mol (‘molecules’) is a collection of sets, with At € Mol, satisfying the follow-
ing closure conditions:

(1) (Vertical analytic closure.) Vx € Mol: Vy € x: If y ¢ At then y € Mol.
(i1) (Horizontal analytic closure.) Yx € Mol: Yy C x: y € Mol.
(iii) (Vertical synthetic closure.)

(iii-A) (Element-Element Replacement.) If some molecules and/or atoms are ‘in-
dexed’ by the elements of a molecule, then their collection is a molecule. L.e.:

Vx € Mol: V function f from x to At U Mol: {f(y) : y € x} € Mol.

(iii-B) (Part-Element Replacement.) If some molecules and/or atoms are ‘in-
dexed’ by the subsets of a molecule, then their collection is a molecule. lL.e.:

¥x € Mol: ¥ function f from P(x) to At U Mol: {f(y) : y C x} € Mol.
(iv) (Horizontal synthetic closure.)

(iv-A) (Element-Part Replacement.) If some molecules are indexed by the ele-
ments of a molecule, then their union is a molecule. Le.:

V¥x € Mol: Y function f from x to Mol: |J{f(y) : y € x} € Mol.

(iv-B) (Part-Part Replacement.) If some molecules are indexed by the subsets of
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a molecule, then their union is a molecule. L.e.:
V¥x € Mol: Y function f from P(x) to Mol: [ J{f(y) : y C x} € Mol.

Remarks. (1) This definition amounts to roughly the same as Zermelo’s (1930)
notion of ‘normal domain’, or the notion of ‘Grothendieck universe’. There one has
the more familiar conditions corresponding to the Power-Set and Union axioms in-
stead of my more general conditions (iii-B) and (iv-A). (And nothing corresponding
to my condition (iv-B), which of course follows from (iii-B) and (iv-A), but was nev-
ertheless included above for the sake of conceptual symmetry.) My reason for this
departure is that the conditions as formulated here, as four forms of ‘Replacement’,
are plausibly regarded as having a purely synthetic character (if we consider only the
objects to be collected or united [not the ‘indices’] as the ‘premisses’ of the ‘ontolog-
ical inference’); whereas Power-Set and Union are more naturally regarded as hybrid,
analytico-synthetic principles (and hence, plausibly, less fundamental principles).

(2) Note also that, given the requirement that At € Mol, of course Mol (un-
like At) must necessarily be non-empty; and also Mol is forced to contain ‘large’
sets if At is itself a ‘large’ set. E.g. if At is infinite then Mol must contain e.g.
o = {0,{0},{0,{0}}, ...}. (Whereas if At is finite, Mol may or may not contain w.)

(3) Here possible worlds will correspond to possibly true attributions of truth-
values to atoms, and intensions (intensional propositions) as usual to sets/disjunctions
of possible worlds. Now if the requirement that At € Mol was dropped from the
definition above (and nothing else changed), intensions — even possible worlds them-
selves — might not have any corresponding hyperintensional proposition (in a ‘frame’);
so even say the formula of S5 with propositional quantifiers ‘saying’ that ‘there are
world-propositions’ (valid w.r.t. the standard possible world semantics for S5 with
propositional quantifiers) would not be valid here.

A basic frame is a triple (At, Mol, wg) where:

(1) (At,Mol) is a Zermelo universe.

(2) wo (‘actual world’) is a function from At to the set of truth-values {T, F}.

A modal frame is a quadruple (At, Mol, wg, W) where:

(1) (At,Mol, wg) is a basic frame.

(2) W (‘possible worlds’) is a set of functions from At to {T, F}, with wg € W.
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An existential frame is a quadruple (At, Mol, wg, E) where:
(1) (At, Mol, wg) is a basic frame.
(2) & (‘existence-set’ function) is a function from At to {{wg}, {}} = P({wo}).

(Intuitively, & counts an atom as existent or non-existent, according as it sends it
to {wo} or {}.)

And finally a full frame — or briefly, frame — is a quintuple (At, Mol, wg, W, &)
where:

(1) (At, Mol, w, W) is a modal frame.
(2) & (“existence-set’ function) is a function from At to P(W).

— To avoid awkwardness, we often state definitions etc. in terms of full frames
only, but it should always be clear whether or not they are applicable in the more lim-
ited contexts of basic frames or modal frames or existential frames.

Relative to a frame & = (At, Mol, wg, W, &), we define:
HypProp =4 AtU Mol.
IntProp =g P(W).

(If more than one frame is being considered in a given context, we may use obvi-
ous differentiating notation such as #-HypProp etc. The same point applies to many
other definitions below.) The elements of HypProp we call hyperintensional proposi-
tions, and the elements of IntProp we call intensional propositions (of course, relative

to 7).

With basic frames and existential frames, the role of W can be systematically
played by {wg}; and so the many important notions defined in the context of full
frames involving the idea of inftension can still be applied, although now, in this ‘lim-
iting case’ of in effect one-world possible-world domains, it is more natural to speak
of extension. (Thus instead of the IntProp above we can write ExtProp [= P({wg})];
instead of the Int, o-Int etc. below, we can write Ext, o-Ext, etc.)

The intension (or ‘truth-set’) function is defined for atoms in the obvious way: for
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o € At:
Int(a) = {w € W : w(a) = T}.

We can then extend the functions Int and & to all hyperintensional propositions in
the natural way: for X € Mol:

Int(X) = —N{Int(x) : x € X}.
EX) = N{EK) : x € X}

— A model is a pair (¥, 0) where ¥ is a frame and o (‘interpretation-function’) is
a function from the set of propositional variables to HypProp.

(Thus this is the notion of a ‘full model’. With F taken instead as a basic frame,
or modal frame, or existential frame, we have the notion of ‘basic model’, or ‘modal

model’, or ‘existential model’.)

The interpretation-function o can be extended in the obvious way to non-atomic
transparent formulas:

o(N(A1,...,Ap)) ={0(A}),...,0(Ap)}.

Thus all transparent formulas get ‘hyperintensional values’. Next we define ‘in-
tensional values’ for all formulas:

o-Int(A) = Int(o(A)).

o-Int(A = B) = W or 0 according as o(A) = o(B) or not.

o-Int(EA) = E(0(A)).

o-Int(A € B) = W or 0 according as 6(A) € o(B) or not.

o-Int(A 6 B) = o-Int(B) or 6-Int(A) or 0, according as: o(B) € Mol and card(c(B)) =
1 and o(A) e? o(B); or o(B) € Mol and card(o(B)) > 1 and o(A) = {X} for some
X € o(B); or neither condition is satisfied.

(The first case is that where o(B) is a conjunction of the form A(c(A),...), i.e.

N(N(o(A), ...)): then the immediate grounding claim is equivalent to the obtaining
of o(B) (which here implies also the obtaining of 0(A)). And the second case is the
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‘broadly disjunctive’ case where o(B) is a neconjunction with two or more necon-
juncts, and o(A) is the negation of one such neconjunct: here the immediate ground-
ing claim is equivalent to the obtaining of 6(A) (which here implies the obtaining of
0(B)). — So this clearly correctly accounts for the cases where o(B) is either a necon-
junction with single neconjunct itself a non-empty neconjunction, or a neconjunction
with more than one neconjunct. And in all other cases it is impossible that anything
be immediate ground of o(B). For these other cases can be classified as: (1) o(B) is
neconjunction with single neconjunct not itself a non-empty neconjunction, i.e. either
atomic —i.e. o(B) is negation-of-atom — or the empty neconjunction — i.e. o(B) is the
empty conjunction N(N( )) —; or (2) o(B) is the empty neconjunction; or (3) o(B) is
not a neconjunction at all but an atom. And it is clear that in all these cases nothing
can immediately ground o(B).)

(One can of course say, with much plausibility, that the complexity of the present
clause is a clear indication that 0 is more reasonably taken as a defined rather than
primitive expression. And indeed as we will see it is definable from the other re-
sources of HPL. Here we have taken it as primitive for the benefit of convenient study
of ground-theoretic fragments of HPL.)

o-Int(N(@py, . .., n)) = —N{o-Int(py), . .., o-Int(pn)}.

o-Int(Qg) = W or 0 according as o-Int(¢qp) = W or not.

o-Int(¥pg) = N{o’-Int(¢) : 0’ is p-variant of ¢}.

— We say that model (7, o) verifies formula ¢ if wg € o-Int(¢p). And we say
that ¢ is valid, or £ @, if every model verifies ¢; that ¢ is satisfiable if some model
verifies (; that I' implies @, or I k ¢, if every model which verifies every formula in
I also verifies ¢; and so on. — If ¢ is a sentence (closed formula), we may also say
that a frame ¥ verifies ¢ if every (or equivalently, some) model based on ¥ verifies .

Remark (on ‘supervalidity’). Some valid formulas will be ‘artefacts’ of our choice

of neconjunction as single primitive truth-functional connection. E.g. (with the natu-
ral definitions of the relevant expressions, soon to be given explicitly):

EA(p) = V(p)
FA(p) = -—p

FVp Vq (Mol(p) AMol(qQ) AVr(rep < req) = p=q)
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FEVpAdlgVr(req & r=p).

Many other valid formulas by contrast have a more ‘robust’ character and would re-
main valid with any reasonable variation in the choice of primitive truth-functional
connections (and the corresponding adjustments in the semantics).

A precise notion of ‘robust validity’ or ‘supervalidity’ can be defined in terms of
a fixed list of alternative sets of primitive connections. (So a supervalid formula is
defined as a formula which is valid under all such alternative schemes. But note that
a precise definition here requires a distinction between a formula ‘as written’ and its
definitional expansion. It is the formula-as-written that is supervalid, but this means
that all its definitional expansions are valid in their respective schemes.) (There are
also of course corresponding variations of other semantical notions such as satisfia-
bility, consequence etc.) But doubts as to which set of primitive connections should
be ‘elected’ as the set of ‘absolute’ primitives are now replaced by doubts as to which
sets should be elected as ‘main candidates’! — I will not pursue this matter further
here, but just state dogmatically that the following seems to me to be perhaps the
most plausible list of such ‘main candidates’: (i) neconjunction only, (ii) nedisjunc-
tion only, (iii) negation and conjunction, (iv) negation and disjunction, (v) negation,
conjunction and disjunction, and (vi) neconjunction and nedisjunction.

It is easily seen that none of the above-displayed formulas (as written) is super-
valid w.r.t. this list. — Still, e.g. (to take a variant of the last formula above) the formula
‘saying’ that either for every proposition there is exactly one proposition having it as
single immediate constituent, or for every proposition there are exactly two proposi-
tions having it as single immediate constituent, or for every proposition there are ex-
actly three propositions having it as single immediate constituent — this formula is su-
pervalid. (One holds in schemes (i) and (ii); two in (iii), (iv) and (vi); and three in (v).)
— So I guess one might feel with some justification that we have replaced a ‘parochial’
(w.r.t. neconjunction as single primitive) notion of validity not by a ‘global’ notion but
by a ‘hexa-parochial’ notion. — However this may be, there remain of course (for what
they are worth) legitimate relative notions of supervalidity — one for each non-empty
collection of (truth-functionally ‘complete’) sets of truth-functional connections. 4

Remark (on nomenclature for subsystems of HPL). The most rudimentary (nat-
ural) fragment of HPL is Classical Propositional Logic (in terms of N): this we call
CPL. Then there is S5, i.e. CPL plus modality. Next there is CPL2, i.e. CPL with
the addition of propositional quantifiers, and S52, i.e. S5 with the addition of propo-
sitional quantifiers. And if to any of these four systems we add some of our four
hyperintensional connections (=, E, €, 0), we accordingly adjoin the names of the
connections to the name of the system: thus CPL=, CPLZS, 8526, S5=E, etc.
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If we want to refer to the language of a system, we prefix L to our name for the
system: thus e.g. £S52 is the language of S52.

Sometimes we want to refer to a subsystem which is close to the whole of HPL,
and then it may be more convenient to speak in ‘subtractive’ terms —e.g. ‘E-free HPL®
instead of $52=¢0, or ‘non-modal HPL’ instead of CPL2=Eg0. 4

Remark (on ‘purely ontological’ fragments of HPL). As we have already said, we
may distinguish two aspects of a proposition: (i) its ‘purely ontological’ aspect (as a
certain complex object made up from certain constituents in a certain way); and (ii)
its import, what it ‘says’. — It is perhaps not too far off to say that ‘extensional’ and
‘intensional’ systems of propositional logic — such as CPL, CPL2, S5, S5% —, under-
stood (as one can understand them) as theories of hyperintensional propositions, focus
entirely on the aspect of the import of propositions, in complete abstraction from the
aspect of their inner ontic constitution. In HPL by contrast, the inner ontic constitu-
tion is of course much in evidence; but the import is also considered. It is then natural
to raise the question of isolating a natural fragment or fragments of HPL where only
the ontic constitution of propositions is considered, in complete abstraction from their
import. — It seems to me that the following should be considered as the main strong
fragments of HPL of this kind.

(A) Syntax: — Rechristen transparent formulas as terms. Define ‘atomic formula’
in the obvious way in terms of such ‘terms’ and € and = as the basic (binary) ‘predi-
cates’. (0 is left out of the language, as import-involving; E is left out here but will be
added in the system (B) below.) Then from such atomic formulas, formulas in general
are constructed by N and V. (O is left out. It could have been included but would be
effectless since the atomic formulas are here all ‘rigid’ and also there are no ‘varying
domains’ for the quantifier.) Semantics: — A frame is now reduced to just a Zermelo
universe (At, Mol); the interpretation function ¢ gives an element of At U Mol to
each propositional variable, which induces values in the obvious way for all terms.
Then the notion of a model (i.e. Zermelo universe + interpretation function) verifying
a formula is defined in the obvious way. — This a natural ‘purely ontological’ hy-
perintensional propositional logic; but, as the alert reader will no doubt already have
noticed, it is a very slight notational variant of general set theory (in Zermelian sense)!
(Or alternatively, a keen propositionalist might say: general set theory is a notational
variant of this purely ontological hyperintensional propositional logic.) € corresponds
of course to €, and N inside terms to the braces {...} expressing set formation. —
This exact correspondence should not be surprising: for we are supposing that the
construction of neconjunctive propositions from atomic propositions is exactly struc-
turally similar to the construction of sets from urelements in a Zermelo universe; so if
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we ignore the import of propositions and consider only their ontic structure, we have
nothing but a doppelganger of sets. (Talking sets are just like sets, if we ignore the
talking!)

(Note that despite sameness of primitive symbols, this system is nor CPL%e=, but
a fragment thereof. Here e.g. Yp(p) is not a formula, nor is N(p = g, N(p)).)

(B) Here we add the existence symbol E as basic (unary) predicate to the syntax,
otherwise as in (A). And in the semantics we have frame (At, Mol, &) where (At,
Mol) is Zermelo universe and & is function from At to the set of ‘existence-values’
{Existence, Non-Existence} (which one may define as {1, 0}, or whatever). Then &
can be extended to molecules in the obvious way: a molecule is assigned Existence
if so are all its elements; otherwise it is assigned Non-Existence. — The rest of the
definitions of basic semantical notions is as before in (A). — The correspondence is
now to general set theory with an existence predicate — with the natural view that a set
exists iff all its elements exist, and no constraints as to existence or non-existence of
urelements. — Here one might with more reason consider a (straightforward) modal
extension, since the existence of atoms (and hence of sets/propositions built there-
from) is plausibly taken as not in general rigid. The result is in effect the theory of
Fine 1980 minus its truth-predicate and plus our &. 4

4 Definitions: (¢, 0)-free notions

(1) Truth-functional connectives. The familiar truth-functional connectives can be
defined from N in obvious way:

¢ =dr N(@).
AN, ...) =g “N(@,p,...).
V(@ P, ...) =dr N, ~yp,...).
¢ =P =g N, =p).
ey =q (@AY= ).
We write also ¢ A and @ V  as short for respectively A(¢, ) and V(¢p, ).

(2) Modal connectives. As usual we define:
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°@ =4qf —O~Q.

® 3¢y =¢f O(@ = ).

®E3Y =¢r O(@ < P).

A =gqf O@V =o@.

Vo =g —Ag.

(3) Existential quantifier; facts; world-propositions.
dpo =4t —Vp .

V() [‘For every fact f, o(f)’] =qr Yp(p — @(p)).

(Where p is the alphabetically first propositional variable not occurring in ¢@(f). — In
future definitions this kind of specification will be left tacit.)

At @f) =qr Ip(p A @(p)) (or: =V —~p(f)).

WP(p) [ is a world-proposition’] =gqr (@ A Vp (p — (¢ 3 p))).

Ywe(w) =gt Yp (WP(p) — @(p)).

Aw @w) =gt Ip (WP(p) A @(p)) (or: =VYwW —¢p(W)).

(4) Difference; numerical quantifiers.

A#B =g -(A=B).

Then weak and strict numerical propositional quantifiers d,p ¢, I!4p ¢ can be
defined in familiar way. We can also define similar notions 3n(s—3)p @, H!H(H)p )
using &3 in the definitions instead of =. (In all cases we omit the nif n = 1.) Also with
quantification over facts, or world-propositions, etc., there are of course in all cases
the similar definitions. Thus e.g. we have £ —=3!w(w); indeed for any n, £ A,w(W);

but £ 1 EDw(w).

(5) Priorian modalities; content inclusion; E-analytic and E-synthetic implica-
tion, and E-equivalence.
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O%A [‘It is strongly necessary that A’] =4¢ O(A A E(A)).
okA [‘It is weakly necessary that A’] =4 O(E(A) — A).
oS A [Tt is strongly possible that A’] =4 ¢(A A E(A)).
oKA [It is weakly possible that A'] =g¢ ¢(E(A) — A).

(These notions correspond approximately to Prior’s strong and weak modalities.
See Prior 1957 and Fine 1977.)

A E B [‘The basic content (simple non--necessarily-existing constituents) of A is
included in the basic content of B’] =4 E(B) 3 E(A).

A (-3,3) B [‘A E-analytically implies B’] =4 (A 3B)A(BLC A).
A (-3, E) B [‘A E-synthetically implies B’] =4 (A 3B) A (AE B).

(E.g. E (p Aq) (3, 2) p but not so for E-synthetic implication, and k p (3,E) (p V
q) but not so for E-analytic implication.)

A (£3,3C) B ['A is E-equivalent to B’] =4¢ (A ¢3 B) A (E(A) £3 E(B)).

(These notions of E-analytic implication and E-equivalence correspond approx-
imately to the ideas of ‘analytic implication’ and ‘analytic equivalence’ commonly
associated with the name of Parry [see e.g. Fine 1986].)

There are also of course the ‘mixed’ notions (-3, JC) and (&3, C), where the
modal quasi-order relation goes with the existential equivalence-relation, or the modal
equivalence-relation with the existential quasi-order relation.

5 Definitions: Stoichiological notions
(1) Identity and immediate ground. Although included among our primitives of HPL

for the sake of convenient study of fragments, identity and immediate ground are read-
ily definable in LCPLZ%e:

A=B =4 VYp(Aepe Bep).

(An alternative definiens is A € =B. This has the advantage of greater brevity and
avoidance of quantifiers, but the disadvantage of not being in the ‘pure logic of con-



20 R. BATCHELOR

stituency’ [in the sense similar to Fine’s ‘pure logic of ground’].)

AOB =g (AAB).A. Alp(peB)AAe2B)V (Ip(peB)AdpeB (A=
—p)).

(Here &2 means of course immediate constituent of some immediate constituent — see
below for the formal definition.) — Indeed, as already mentioned, it may be very plau-
sibly said that the much greater complexity of the clause for o-Int(A 6 B) (compared
to the other clauses) in our semantics for HPL is the mark of a notion which ought to
be defined and not taken as primitive.

Remark. Note that here the immediate grounds of a true disjunction (with two or
more disjuncts) are not the true disjuncts but rather their double negations. For e.g. p
V q is here N(=p, —q), and so the immediate grounds (supposing p V q true) will be
——p and/or —=—~q. More generally, for N(-p, q, ...), supposing p true, we will have
——p as immediate ground rather than just p. (In the case of single disjunct though,
i.e. V(p) = N(—p) [a.k.a. =—p], p itself is the immediate ground.) — There is here some
room for debate as to whether we shouldn’t just ‘go straight to p’ (as indeed we do, as
just mentioned, in the case of single disjunct).

We will not here try to decide which of the two notions is ‘best’. The alternative
notion, which we may call 6’, can be defined here (in LCPLZ ¢) by a formula like the
one above for A 6 B except that dp € B (A = —p) at the end is replaced by (using
Neg(A) [‘A is negative’] for dp (A = —p)):

dp e B (—=Neg(p) A A =-p) vV dp e B (Neg(p) A p = -A).
We then have e.g. Ep — (p 0 (p V q)).

Incidentally, it is also possible to define 6’ in LCPL20 (where = is readily defin-
able; see further below):

AO'B =g (AAB)AIp(p0B)A[ApB =Np) AA6B)V (-IpB = N(p))
A (AOB A =3p(A = —-p)) vV Ip 0 B(p = =—A))].

(The second disjunct in the outer disjunction inside the square brackets corresponds
to the case of a neconjunction with two or more neconjuncts. Then there a non--
doubly-negative 6-ground is still a 6”-ground, and for a doubly negative 6-ground we
take its ‘double negatum’ as the 6’-ground.) — I do not see a reverse definition of
0 in LCPL26’, and suspect that there may be none. Interchanging 6 and 6’ in the
above-displayed definition until the first disjunct in the outer disjunction inside the
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square brackets gives a suitable beginning, but it is unclear whether this might be
‘completed’ for the key case of neconjunction with two or more neconjuncts. We can
say that (i) for a non-negative 6’-ground, we take its double negation as 0-ground, and
(ii) for a doubly negative 6’-ground, we again take its double negation as 0-ground.
However with a singly negative 6’-ground, i.e. of form —p where p is not negative, we
can’t know whether this is a 0’-ground of B because p is a (false) neconjunct of B, or
because ——p is a (false) neconjunct of B; and the 0-ground to be taken in these two
cases is different, viz. —p in the first case and ———p in the second.

— The ‘specifics’ of these considerations depend of course on our adoption of
neconjunction as single primitive connection. But systematically similar considera-
tions would apply in other cases — e.g. if we took — and A as primitives, or — and
V, or nedisjunction (in the latter two cases the debatable clauses concerning now
conjunctive cases), or even say all of =, A, V. (But note that with e.g. = and A,
we can at least ‘always take the negation’ uniformly including the unit case —i.e. we
can say that [true] =A(—p) has —=—p as immediate ground.) -

(2) Levels of constituency; part, constituency,; atomicity and molecularity; purity;
etc. Levels of constituency can be defined inductively thus:

Ae!B = AeB

Ae"™I B = Ip(AepApe”B).

e-trans(A) [‘A is e-transitive’] =q¢ VYp (p g2 A > peA).
ACB['Aisapartof B'] =4 Vp (e-trans(p) ABep— Aep).
A CB [‘Aisaconstituentof B'] =44 ACB A A #B.

Remarks. (1) General constituency (C) is of course the ancestral (alias transitive
closure) of immediate constituency (€). So the obvious definitions would be in terms
of a general pattern for defining the ancestral of a relation, in ‘second-order’ terms.
(As is well known there is no general way of defining the ancestral of an arbitrary
relation in ‘first-order’ terms. [Proof is easy exercise using Compactness.]) Here we
have managed to give a ‘first-order’ definition by using the ‘purely collecting’ capac-
ity of neconjunctions. — Note also that this is very similar to the definition of ‘ancestral
member’ in first-order set theory.

(2) We thus manage to define C in terms of € — more specifically, in LCPL2e. It
seems clear that the reverse procedure is not possible, i.e. that € is not definable in
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(what we may naturally call) LCPL2C — indeed not even in £S52CE. For: for every
Zermelo universe (At, Mol), there exists a permutation 7t of At U Mol such that 5t is an
automorphism of the relational structure (At U Mol, C) but not an automorphism of
the relational structure (At U Mol, €). E.g. w might be the function which, ‘inside’ any
object of At U Mol, changes NNNN( ) to N(NNN( ), NN( ), N( )) and (simultane-
ously) vice versa. Obviously this permutation does not change atoms (st(a) = o for all
o € At); and so the statement above remains true if we extend the relevant structures
by addition of the other frame-components wg, W, &. And from this (together with
various ‘bureaucratic’ facts) the indefinability of € in LS52CE should follow. (Fine
1992 p. 48 fn. 16 contains a similar argument for the set-theoretic case of € and its
ancestral.) Note that the slightly simpler permutation transposing (‘inside’ any ob-
ject) NNN( ) and N(NN( ), N()), although also an automorphism of C and not of ¢, is
less convenient here since it ‘affects truth-values’ (as NNN( ) is necessarily false and
N(NN( ), N( )) necessarily true).

(3) Similar remarks apply also to our definition (to be given later) of general
ground (G) from immediate ground (0). In particular, to show the indefinability
of 0 in LCPL2G, indeed in £S52GE, we may use the ‘uniform transposition’ of
NNNNNN( ) and N(NNN( ), N( )), which is automorphism of G but not of 6. 4

A is a mediate constituent of B =45 Ap (ACp Ap CB).

AoverlapsB =4 dp(p CA ApCB).

A is disjoint from B =4 —(A overlaps B).

Mol(A) [‘A is molecular’] =4 dp(p CA) vV A =N().

At(A) [‘A is atomic’] =g¢ —Mol(A).

Pure(A) =g¢ —dp C A: At(p).

Elem(A) [‘A is elementary’] =g At(A) vV dp (At(p) A A = —p).

AtFact(A) [‘A is an atomic fact’] =4 At(A) A A.

Similarly for MolFact(A) and ElemFact(A).
(3) Essential part; C-analytic and C-synthetic implication; hyper-rigidity; possi-

ble worlds. All the definitions above are in LCPL2e. The following definitions by
contrast use also modality (except for the definition of MNCS).
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A !C B [‘Ais an essential part of B’] =4 Vp&3B: ACp.
(Thus we have e.g. £ ~(q Cp) = =(q IC (p A (q V —~q))).)

A (-3, D) B [‘A C-analytically implies B’] =4 (A 3B) A (B CA).

A (3, C) B [‘A C-synthetically implies B’] =4 (A 3B) A (ACB).

— And similarly with respectively D and C instead of D and C.

A<ACB =4 Vp(Aup) ApCA—pCB).

A>ACB =y B<ACAH,

A=ACB =4 Vp(Aup) - (pCA o pCB)).

A (3, 7€) B [‘A AtC-analytically implies B'] =4 (A 3 B) A (A >AC B),.

A (3, <AC) B [‘A AtC-synthetically implies B'] =4 (A 3 B) A (A <A B),.

A (3, =AC) B [‘A is AtC-equivalent to B'] =g¢ (A £3B) A (A =AC B).

Again, to be thorough we may mention that there are also of course the ‘mixed’
notions (-3, =At9) and (&3, SA@) where the modal quasi-order relation goes with the
stoichiological equivalence-relation, or the modal equivalence-relation with the stoi-

chiological quasi-order relation.

IAA [‘A is hyper-rigid’]] =4¢ AA A Vp C A (Ap). (I.e. Vp C A (Ap).) (Or
equivalently: Vp (At(p) ApC A — Ap).)

MNCS(A) [‘A is a maximal non-contradictory state’] =4¢ dp: Vq € p Elem(q)
AVq(At(@ — (qep VY ~qep)) A A =N(p).

(Curiously, here in the definiens we ‘start’ by considering p in its ‘purely collect-
ing capacity’, selecting one out of each pair of an atomic proposition and its negation,
but then, ‘at the end’, we ‘remember’ that p is a neconjunction, so that to say that A
conjoins these propositions we can just put A = N(p).)

PW(A) [‘A is a possible world’] =g ¢A A MNCS(A).
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Thus with modal-stoichiological resources we manage to select a sort of ‘canoni-
cal representative’ for each strict-equivalence class of world-propositions. We now
have of course £ d!p (PW(p) A p). — Likewise, disjunctions (i.e. neconjunctions
of negations) of possible worlds provide ‘canonical representatives’ for each strict-
equivalence class of hyperintensional propositions:

Can(A) [‘A is a canonical proposition’] =g Mol(A) AVpe A dq (PW(Q) Ap=

We then have of course
F Vp d!q (Can(q) A (q &3 p))-
F Vp Yq [Can(p) A Can(q) — ((p =q) © (p E3 Q)]

— MNCS, PW and Can must, by virtue of the character of their definitions, apply
only to transparent formulas. We may however also define:

MNCST(¢9) =¢r Ip (MNCS(p) A (p &3 ¢)).

PWS (@) =g Ip (PW(p) A (p &3 ¢)).
It is also possible of course to define Can®™ in similar style; but this is not very useful
because for any formula ¢ we have £ Can®3(¢p). (See below the ‘Intensional Compre-

hension Principle’.) Indeed for any expression ®(A, B, ...) meaningful for transpar-
ent formulas A, B, ..., we may define the notion

(@ P, .) =gr AP Q- (PP, Q) APEPAQEYALLL)

— for what it may be worth. (There is also a universal notion: Vp, g, ... ((p &3 ¢) A
@s8YA... 2D, q,-..)))

Remarks and Questions. (1) Of course £ WP(p) < PW3(p).
(2) It seems clear that Y@ € LHPL: ¥ WP(¢) and (equivalently) ¥ PW®3(¢).

(3) Clearly V transparent formula A of LHPL: ¥ MNCS(A) and (a fortiori) ¥
PW(A).

(4) E MNCS®3(Yp(At(p) — p)) and E MNCSE3(Vp(At(p) — —p)).
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(5) It seems that V¢ € LCPL2e: If £ MNCS®3(¢) then ¢ is equivalent to one of
the two formulas indicated in (4).

(6) In £S5%¢ we have also:
E MNCS®3(Vp(At(p) A Vp — p)).
E MNCS®3(Vp(At(p) A Vp — —p)).

Are there any other £55%¢ formulas (not equivalent to either of these two or the two
in (4)) with this property?

(7) Any other such formulas when we move to full LHPL (i.e., in effect, add E)?
(Note that such naive candidates as Yp(At(p) — (Ep « p)) don’t ‘work’, since E is
‘non-rigid’.) 4

6 Definitions: Truthmaking, entailment, etc.

The following definitions are nearly all still in LCPL2¢, but seemed worthy of consigna-
tion to a separate section.

Note on notation: In the present section and in the corresponding ‘Principles’ sec-
tion below (sect. 10), we revert to the ‘old’ symbols D and = for material implication
and material equivalence, reserving — and < for relevantistic notions of entailment
and mutual entailment.

(1) States.
State(A) =qr JI' (Vp € I' Elem(p) A A = A()).
Le. a state is a conjunction of (zero or more) elementary propositions. Here and in

some other places below we use the set notation for the sake of increased readability;
the definiens above stands for 4q (Mol(q) A Vp € q Elem(p) A A = N(Qq)).

V2 @(Z) =gt Yp (State(p) > ¢@(p)).
Similarly for AZ @(Z).
(2) Truthmaking and falsity-making. We define truthmaking and falsity-making

recursively as follows. (Recursive definitions such as the present one are allowable in
HPL since we have in effect the higher-order resources needed to justify the procedure
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in the usual way. Thus here for A and B any transparent formulas of ZHPL, both ‘A
is tm of B’ and ‘A is fm of B’ stand for specific formulas of LHPL.) (We often use
‘tm’ to abbreviate ‘truthmaker’ or ‘is truthmaker of’, and similarly for ‘fm’.)

For atomic proposition o

2 is tm of a iff Z = A(a).

2 is fm of a iff Z = A(—Q).

For molecular proposition N(I'):

2 is tm of N(I') iff Z is fm of some element of I'.

2 is fm of N(I') iff X is fusion of tms of the respective elements of I'.

(Here fusion of certain states means the state whose conjuncts are the conjuncts of the
given states.)

A is semiregular truthmaker (stm) of B =g AU (I' # 0 A Vp € ['(p is tm of B)
A A = Fusion(I")).

L.e. A is a fusion of one or more tms of B. (Note that of course a semiregular truth-
maker need not be a truthmaker simpliciter.) — Definition of ‘A is sfm of B’ is exactly
similar: just replace tm in the definiens above by fm.

A is regular truthmaker (tm) of B =4 AU T # 0 AVpe '(pistmof B) A A
= Fusion(I')) v 3Z{, 2> (2| tm B A Z, tm B A A is superconjunction of 2{ A A is
subconjunction of X5).

L.e. A is either a fusion of one or more tms of B or an intermediate between two tms
of B. — Again, definition of ‘A is rfm of B’ is exactly similar: just replace tm in the
definiens above by fm. (The other ‘semiregular’ notion with just the condition on in-
termediates is also of some interest; but I guess we already have enough on our plate
here.)

Both stm/sfm and rtm/rfm can alternatively be defined recursively like tm/fm
above, only with the suitable modifications to the clauses for neconjunctions.

(3) Entailment, etc.
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A="B =4 VZ(ZtmA=2XtmB).
Similarly for :fm, :stm’ :sfm’ :rtm’ :rfm'
A<™MB =4 VZ(ZtmAD>ZtmB).

Slmllarly for Sfm, SStm, szm7 Srtm’ Srfm'

A=MB =4 VX (2 includes [i.e. is superconjunction of] tm of A = X includes
tm of B).

fm stm ~sfm ~rtm rfm
s — s = - - .

> ’

Similarly for =
A<™MB =4 V= (Zincludes tm of A D X includes tm of B).
Similarly for <fm, <stm_ <sfm rtm - rfm,

Of these various concepts the following are particularly important and thus will
receive here additional ‘names’:

A — B [‘Aentails B'] =4 A<"™B.
This is, as is easily seen, equivalent to VX (2 is tm of A D Z includes tm of B).
A < B [‘A mutually entails B’] =4 A =B,

This is of course equivalent to A — B .A. B — A. It is also equivalent to A =™ B, as
well as (therefore) equivalent to A =™ B A A ~fm g,

A % B [‘Ais positively regularly equivalent to B’] =4 A ="M B,

A &7 B [‘A is negatively regularly equivalent to B’] =4 A =rfm g,

A & B [‘Ais (fully) regularly equivalentto B’] =4 A ©" B A A © B,
A ~* B [‘A is positively semiregularly equivalent to B’] =4 A =S'M B,
A ~~ B [‘A is negatively semiregularly equivalent to B’] =g A =M B,

A ~ B [‘Ais (fully) semiregularly equivalent to B'] =4t A~"B A A~ B.
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A =% B [‘A is positively exactly equivalent to B’] =4 A =" B.
A =~ B [‘A is negatively exactly equivalent to B’] =4¢ A =fmp,
A ~ B [‘Ais (fully) exactly equivalent to B'] =4+ A~ B A A=~ B.

Remarks. (1) The equivalences <, &, ~, ~ correspond to four notions of
‘moderately hyperintensional’ proposition, successively finer but all intermediate be-
tween the coarse-grained intensional propositions and the ultra-fine--grained struc-
tured propositions (which is what we think of the variables of LHPL as ranging over)
in their full hyperintensional glory. Propositions of these four intermediate kinds can
in each case be defined (a la Fine) as the ordered pair consisting of the set of truth-
makers and the set of falsity-makers, in the appropriate sense of truthmaking and
falsity-making. (In the case corresponding to <, this is: superstates of tms, super-
states of fms.) Or the same ‘information’ can also easily be encoded if we like by
(‘radically’) hyperintensional propositions of appropriate kind.

(2) The origins of the above definitions of (i) truthmaking, falsity-making, entail-
ment, mutual entailment and (ii) regular tm and fm and positive regular equivalence
etc. and (iii) positive semiregular equivalence etc. are to be found in the ingenious se-
mantic constructions of respectively (i) van Fraassen 1969 and (ii) Fine 2016 and (iii)
Correia 2016 (the general idea of something like regular equivalence remounting to
Angell 1977, 1989, and of course the general idea of entailment to Anderson, Belnap
etc.). (See also Batchelor 2022 Chs. 4 & 5 for my own work in this area.) Note how-
ever the difference in context: here truthmaking is a relation between certain worldly
items (states) and other worldly items (propositions, an sich), as are entailment, mu-
tual entailment, etc. (now between proposition and proposition). Nothing linguistic or
semantic is involved. (In Fine 2017 [‘A theory of truthmaker content’] too the context
is worldly like here, despite various differences in other respects.) — The case is com-
parable to the more familiar case of possible worlds and related notions: there is the
context of possible world semantics with notions like a formula being true in a world
w.r.t. a model etc. etc.; and the analogous but purely worldly notions of a proposition
(an sich) being true in a world, of a proposition strictly implying another, and so on.

(3) Just as the resources of possible world semantics, originally devised for or-
dinary modal logic, can be more fully exploited in the richer systems of so-called
‘hybrid logic’ (where we have also world-variables and symbol for truth in a world),
so also similarly the resources of truthmaker semantics, originally devised (in van
Fraassen’s paper) for a (rudimentary) form of relevance logic, can be more fully ex-
ploited in a richer system of what we might perhaps call Truthmaker Logic. Here
in the primitive vocabulary, in addition to the propositional variables and the truth-
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functional connective or connectives (neconjunction, or more ‘traditionally’ negation,
conjunction and disjunction), we would have state variables and function symbols for
fusion and common-part (for formation of ‘state terms’), and symbols for truthmaking
and falsity-making. We may then distinguish: the quantifier-free system; the system
with quantification over propositions and states; and the system with quantification
over propositions and states and also quantification over sets of propositions and sets
of states. In each case a modal extension of the system might also be considered.
— Logics for entailment and various other notions (defined as above) would then be
fragments of appropriate versions of this Truthmaker Logic.

(4) Existential import. 1 use this term here not of course for anything to do with
syllogistics (God forbid), but for the idea of the (full) ‘existential implications’ of a
proposition. Thus it is natural to think that the existential import of an atomic propo-
sition Pa consists in the existence of a and the existence of P — or equivalently, the
existence of the proposition Pa itself. (For if a has the quality P then surely it must
exist; and if the quality P is instantiated then surely i must exist too.) On the other
hand the existential import of a negative elementary proposition such as —Pa appears
to be ‘null’. (Surely existence of a is not implied by its lacking quality P, nor existence
of P by its failing to be instantiated by a.) The existential import of a conjunction of
elementary propositions is surely the ‘sum’ of the existential imports of the conjuncts,
i.e. (by the preceding considerations) the conjunction of attributions of existence to
the atomic conjuncts. — But it should not be thought that the existential import of a
molecular proposition is always so easily determined (or even determined at all) by
the existential import of the components. E.g. the existential import of —Pa is null,
as is the existential import of —Qb; but the existential import of =—Pa should surely
be the same as that of Pa, and of =—Qb same as that of Qb. Nor should it be thought
that the existential import is always ‘categorical’, i.e. given by a conjunction of attri-
butions of existence. For take e.g. Pa Vv Qb: this does not imply the existence of a, nor
of P, nor of b, nor of Q; but it could not obtain if none of these things existed. Here
the proper existential import should be given by the disjunction: Either a and P exist
(or equivalently E(Pa)) or b and Q exist (equivalently, E(Qb)).

These remarks certainly give some ‘guidelines’ on the idea of existential import.
But if we try to give a general definition of the existential import of a proposition, the
task can be very puzzling. Or at least it can be so until we hit upon the idea of truth-
making, which points the way to a clear and solid definition. For the overall import
of a proposition can be clearly organized through the disjunction of its truthmakers;
each of these, being a mere conjunction of elementary propositions, as it were wears
its (‘categorical’) existential import on its sleeve (viz.: the conjunction of attributions
of existence to the atomic conjuncts); and the existential import of the whole proposi-
tion is then taken as the disjunction of the existential imports of its truthmakers. — So
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we are led to the following definitions.

ExistForce(2) [ ‘the existential force of state 3 (obtains)’] =gq¢ Vp (At(p) A p €2
2D Ep).

ExistImp(A) [‘the existential import of proposition A (obtains)’] =gqf IZ (X tm
A A ExistForce(X)).

Clearly F VZ (ExistForce(Z) &3 Existlmp(Y)).

Note the hyperintensional character of this notion of existential import: it can
easily happen that strictly equivalent propositions have non--strictly-equivalent exis-
tential imports. E.g. we have:

E At(p) A At(q) A =(Ep &3 Eq) D —(ExistImp(p A —p) £3 Existlmp(q A —=q)).

Even strictly equivalent propositions with the same atomic propositions as constituents
might have non-equivalent existential imports:

E At(p) A At(q) A =(Ep 3 Eq) D —(Existlmp(p A =p A =q) &3 Existlmp(p A —p
A Q).

These examples show also that the role played in our definitions above by the ‘sub-
tle DNF’ consisting of the disjunction of truthmakers of a proposition could not have
been played instead by the more familiar-looking but less subtle concept of the dis-
junction of maximal non-contradictory states corresponding to the given proposition,
or even the subtler but not subtle-enough concept of the corresponding disjunction of
non-contradictory states ‘in’ the atomic propositions which actually occur in the given
proposition. For in the examples above the corresponding disjunction of such kinds is
always the empty disjunction, and so the corresponding existential import obtained by
striking out negated atoms and replacing asserted ones by the corresponding attribu-
tions of existence — this would also be the empty disjunction (thus necessarily false);
whereas we want the existential import of e.g. Pa A —Pa to be E(Pa) (which may very
well be possibly true, of course), and the existential import of Qb A =Qb to be E(Qb),
and of Pa A —=Pa A —Qb to be E(Pa), and of Pa A —=Pa A Qb to be E(Pa) A E(QDb), etc.

7 Definitions: Ground-theoretic notions

(1) Identity. Propositional identity can be defined not only in LCPL%e (as we saw),
but also in LCPL26:
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A=B =5 (AAB)AVp(ABpe<BOp).V.(-AA-B)AVp(-AOp e —-B
0 p).

(As before with A € =B, here too it is possible to give a quantifier-free alternative
definiens —e.g.

A 6 -=B VvV =A 6 =—--B, or alternatively

N(A, —=A) 6 ==N(B, —B).

Unlike before, however, here there is no difference as to ‘purity’ or ‘impurity’, all
these definitions being now in the ‘impure logic of ground’. Nor do I see any ‘pure’
alternative.)

Remark. It seems clear that € itself however is not definable in .ECPL26, nor
even in £S5%0E (i.e. in effect L(HPL — ¢)). For take the ‘uniform transposition’ of
NNNN( ) and N(NN( ), N( )): this is automorphism of 0 but not of €. Indeed this is
not even an automorphism of C; so even C is not definable in L(HPL — ¢).

(2) Levels of grounding; ground, weak ground; total grounds; fundamentality, etc.

A0'B = AOB.

AO™IB = Ip(AOpApOB).

O-trans(A) =q¢ Yp (p 02 A - p O A).

A G B [‘A weakly grounds B’, or ‘A is a weak ground of B’] =4 (AAB) A VD
(0-trans(p) ABOp — A0Op).

A GB [‘A grounds B’, or ‘Aisaground of B’] =44 AGB A A #B.
A is a mediate ground of B =3¢ dp (A Gp A p G B).

Ajq, ..., Ay are the complete groundsof B =55 A{GBA...AALGBAVp(p
GB—-op=A;V...vp=Ay).

A fact can of course have infinitely many grounds. To obtain in the present context
a notion closer to general idea of the complete grounds of a fact we may appeal to the
‘purely collecting capacity’ of propositions (neconjunctions) and define (using also €):
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A collects (precisely) the complete grounds of B =3¢ Yp(p GB & pe A).

Grounded(A) =4¢ dp (p G A).

Ungrounded(A) =4 —dp (p G A).

FundFact(A) [‘A is a fundamental fact’] =4 A A Ungrounded(A).
We then have: £ FundFact(p) < (ElemFact(p) V p = NN( )). Ground-theoretic equiv-
alents or near-equivalents of the stoichiological notions of elementary proposition,
and atomic proposition/fact, and molecular proposition/fact, can also be straightfor-
wardly defined.

A UG B [‘A is an ultimate ground of B’] =4 A G B A FundFact(A).

— Similarly for UG (ultimate weak ground).

(3) Sufficient ground; essential ground; G-analytic and G-synthetic implication;
Finean transcendentality. We pass on now to some modal ground-theoretic notions.

Ay, ..., Ay are sufficient grounds for B =44 A{GBA...AA L GBA(A] A
...ANAp 3B).

A collects sufficient grounds for B =3¢ Vpe A(p GB) A (Vpe A (p) 3 B).
A !G B [‘A is essential ground for B’] =4 VYp &3 B (A Gp).

A (3, G_l) B [‘A G-analytically implies B’] =4f (A 3B) A (B G A).

A (3, G) B [‘A G-synthetically implies B’] =4 (A 3B) A (A G B).

— And similarly with respectively Q‘l and G instead of G'and G.

A<YSB =4 VYp(pUGA —pUGB).

A>USB =4 B<USA.

A=YSB =4 Vp(pUGA o pUGB).

A (3, 2Y5) B [‘A UG-analytically implies B'] =g¢ (A 3 B) A (A >US B).
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A (3, <Y9) B [‘A UG-synthetically implies B’] =4 (A 3 B) A (A <US B).

A (83, =Y9) B [‘A is UG-equivalent to B’] =g (A £3B) A (A =US B).

— Again there are also of course the ‘mixed’ notions (-3, =UQ) and (&3, SUQ).

The following definition (already given in Batchelor 2010) tries to explicate within
modal ground-theory the idea of transcendental (or ‘unworldly’) fact proposed in Fine
2005.

TrFact(A) [‘A is a transcendental fact’] =g OA A OVp (p G A — Op).

(An equivalent formulation is: A A OVp (p UG A — Op).)

8 Principles: (g, 0)-free principles

(1) Modal protothetic. In the £S5% fragment of LHPL, the valid formulas are pre-
cisely the valid formulas of S52, also known (after Fine 1970) as S5+, i.e. the stan-
dard system of ‘modal protothetic’ or ‘second-order propositional modal logic’, cor-
responding to the straightforward extension of the possible world semantics to deal
with propositional quantifiers.

(2) Identity. In LCPL= we have valid formulas corresponding to familiar general
laws of identity, such as

Fp=p, FP=q—>q=p, FP=qAQ=r—p=r
and all instances of

Fp=9qA @) — @)

In CPL2= we have also, for each n > 0,

FVp1 ... pn3q(q=N(1, ..., Pn)).

Or more generally, for any transparent formula A we have an instance of ‘comprehen-
sion principle’:

Fdq(q=A).
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In S52= we have:
FA(p = q).
(3) Existence. The fundamental principle here is:
FEA(py ... pn) © Ep; A...AEpn.
More generally, but resorting also to €, we have:
FEp & ¥qCp (Eg).
FEp < Vq (At(q) A q Cp — Eq).
F Mol(p) — (Ep &3 ¥q C p (Eq)),
and same with C replaced by €, or again by atomic constituent.

(4) Intensional Comprehension Principle. This is in fact a general principle of
HPL. Where ¢ is any formula of ZHPL,

Fdp (p &3 ).

Since as mentioned before £ Vp J!q (Can(q) A (q £3 p)), we have also for any formula
¢ of LHPL,

k 3!p (Can(p) A (p &3 ¢)).

— A fully formal proof of the validity of all instances of the Intensional Comprehen-
sion schema would be somewhat laborious; but the basic ideas are simple enough
(recall that = and 6 are definable from the rest of LHPL; so it is enough to consider
LSSzeE—formulas):

(1) (Universal) quantifications may be regarded as the conjunctions of instances.
(2) Necessitations of specific propositions (or of specific conjunctions of propo-
sitions etc., resulting from the expansions in (1)), being rigid, can be replaced by say

N( ) or N(N( )) as appropriate.

(3) Same for € connecting specific propositions.
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(4) E applied to a given specific proposition can be replaced by the canonical
proposition corresponding to the existence-set of the given proposition.

The result of this construction is a neconjunctional compound built from atomic propo-
sitions; it need not of course be an actual proposition in our universe, since the ‘con-
junctions’ in step (1) are ‘too big’; but like any truth-functional compound built from
certain atoms, ‘big’ or ‘small’, it will be strictly equivalent to a disjunction of possible
state-descriptions in those atoms — which disjunction is ‘small’, i.e. is a proposition
inside our universe.

9 Principles: Stoichiological principles

(1) Basic Propositional Stoichiology ( CPL%¢ ). Here we have as valid formulas the ob-
vious translations of all the standard axioms of ‘general set theory’ (with urelements)
in more or less the sense of Zermelo 1930 — i.e. the usual axioms of ZFC set theory
with urelements except for the Axiom of Infinity. E.g. corresponding to the Axiom of
Pairs we have:

FEVpVqdr(perAqer),
or if we prefer

EVpVYqdrVs(seres=pVs=q).

— The first version of course immediately follows from the second; and the second
follows from the first together with the appropriate instance of the Separation Schema

EVpdqVr(req e rep A @r)).
When appropriate we must make restrictions to molecular propositions (as opposed
to atomic ones), in a way exactly corresponding to restrictions to sets (as opposed to
urelements). So e.g. corresponding to the Axiom of Extensionality we have:

EVp VYq (Mol(p) AMol(qQ) AVr(repereq) = p=q).

— We have also, corresponding to the requirement on frames that At € Mol, the
principle

Fdp ¥q (At(q) — g & p).
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— In addition to these principles concerning (for the most part) what propositions
there are, we have also the following fundamental principle concerning the truth of
molecular propositions (to which nothing corresponds in the context of sets):

EVp (Mol(p) — (p « =¥Yqep ().

(2) Existence. As already mentioned in the preceding section, here the conspicu-
ous fundamental principle is something like:

E Vp (Mol(p) — (Ep & Yq £ p (Eq)).
(3) Modality. Rigidity principles:
FA(peq), FA(PCq, FAPCQ.

Hence also £ AAt(p), £ AMol(p), etc. — From this plus the ‘Rule of Necessitation’
(which is validity-preserving in HPL) and other basic modal principles, we easily ex-
tend the principles given above for the basic connection between the truth or existence
of a molecular proposition and the truth or existence of its immediate constituents to
their strengthening with &3 instead of the mere <.

Remark and Question. It would be interesting to have a comprehensive axiom-
atization of full HPL (and/or conspicuous fragments). I believe that the stoichiolog-
ical principles indicated in the present section, supplemented by standard postulates
for $52 and equivalential axioms corresponding to the stoichiological definitions of
propositional identity and immediate grounding, should go a long way towards such a
comprehensive axiomatization. (Or we can stick to just £S5%¢E and treat = and 0 as
ordinary defined symbols.) Note however that a complete axiomatization (i.e. where
the theorems are precisely the valid formulas) can surely not be hoped for, as no doubt
the incompletability phenomenon affects HPL as much as e.g. first-order set theory. -

10 Principles: Truthmaking, entailment, etc.

(1) Truthmaking and falsity-making. We focus on tm and fm; but all principles below
hold also with rtm and rfm or stm and sfm in place of resp. tm and fm.

FA(ptmq), FA(pfmq).

F(ptmq)D(p-39).
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E(pfmq) D (p 3 —q).
Ep &3 dX (2 A (2 tmp)).
E=p &332 (2 A (2 fm p)).

It may exceptionally occur that a state is both tm and fm of a proposition (which
state must then be necessarily false by the preceding principles):

EAtp) D[(pA-p)tm (P A-=p) A=(pA-=p]A[pA-pfm(@{pA-p) A
=(p A =p)].

(More thoroughly: p A —p is the only tm, and the fms are p A =p, A(=p), and A(p).)
Indeed this might happen even with a true proposition:

FAP) D [(pA=p)tm (pV =p)V(pA-PIALPA-=P)fm(pV-p)V(pA-p]l
(More thoroughly: p A —p is the only fm, and the tms are p A —=p, A(p), and A(—p).)

£ Pure(p) > -3Z (2 tm p) vV =32 (Z fm p).

FPure(p) ApDVEE tmp=2Z=A()).

EPure(p) A pOVEE fmp=2Z=A()).

(2) Entailment, etc.

EAPp—Qq), FApeq), EApOTqQ), EAp& q), EAPpeq), EAP~Tq),
EAP~"q), EA(Pp~q, EA(p=Tq), EA(p~ @), EA(p~=q).

For A, B € LCPL: E A — B iff A — B is a ‘tautological entailment’ in the sense
of Belnap 1959 and Anderson and Belnap 1962, or equivalently valid in the sense
of the truthmaker semantics of van Fraassen 1969. (Here we have multigrade N as
single LCPL primitive connective, whereas Anderson and Belnap and van Fraassen
have the more common primitives unary — and binary A and V; but the adaptation of
their definitions to the present scheme is straightforward.) In particular we have of
course: ¥ (p A =p) = q, £p — (q V —q). — Similarly, £ A ~* B, resp. E A ~ B, iff A
~* B, resp. A ~* B A =A ~* =B, is valid in the sense of Correia 2016. The relation
between our concepts of positive regular equivalence etc. and equivalence in the sense
of Angell or of Fine 2016 is less straightforward. E.g. the formulasp vV (p A ¢ A1) and
pV(PAQ V(pAQqAT) are Angell-Fine equivalent, but p VvV (p AqAT) .1 . pV
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(pA Q) V(pAqAT) (take p and q as distinct atomic propositions and r as N( )). But
for ‘purity-free’ (sic!) propositions ©* and &~ (and hence ) seem to coincide in
extension and to agree with the equivalences of Angell-Fine logic. That is to say: For
A, B formulas of LCPL in the same variables p; ...pn and without O-ary applications
of N (or of A, V if these are our primitives), we seem to have both

O E-(N()Cp)A...A=(N()Cpp):D>: AT B.=. Ao B,
and (ii) A is equivalent to B in the sense of Angell-Fine logic iff
E=(N()Cpi)A...A=(N()Cpp).D. A o™ B.

Remarks. (1) From this it follows that, if we modified the syntax of HPL by
requiring that N should always apply to a positive number of formulas, and the se-
mantics for HPL by disallowing sets involving the empty set from the domain of
admissible values for the propositional variables (which is what would accord with
the [non-absurd] view that a neconjunction requires one or more neconjuncts), then
o*, & and © (defined as above) would perfectly coincide in extension and be in
perfect agreement with the equivalences of Angell-Fine logic.

(2) With HPL as is, however, such perfect agreement does not seem to be attain-
able w.r.t. any reasonable notion of ‘same truthmakers’ which we can define in the
context of HPL. For we would have to then have thatp V (p AqAr)andp V (p A q)
V (p A q A r) always have the same truthmakers in the sense in question, whence so
do in particularpV (p AqQAN( ) andpV (p Aq) V (p A q A N()), whence so do
pandp V (p A q) (since p A g A N( ) surely has no truthmakers), which however are
not Angell-Fine equivalent. 4

— We have the following series of ‘subsumptions’ between different kinds of
propositional equivalence:

Epeq.D.p&3q. (AlsoEp—q.D.p-3q.)
Epeq.D.peq.
Ep~q.D.p&q.
Ep~q.D.p~q.

(Similarly for the notions of positive and negative regular, semiregular and exact
equivalence, which we omit here from explicit discussion to avoid [or diminish] bore-
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dom.) But the reverse implications are not valid. We have e.g.

EpV(PpAQ).<.p, EpV(PAQ.©.D.

We have even similar examples with the same variables on the two sides:

EpV(PA-p) .<.p, EPV(PA-D) .S.p.

And we have e.g.
EPV(PAQAG@YV-1).o.pV(PAQV(PAQA(TY D),
EpV(PAQA@YV-1)~pV(PAQV(PAQA(YV ).
EpVqQ.o~pVaqQV(pAQ, EpVq.pVqV(pAQ.

In the special case of a pure frame, i.e. with At = 0, there is a general collapse of
equivalences:

EVpPure(p) D [(p=q.=.pSBSPAPESBq=pePAPpeq.=peog AP
©q.=p~A(p~q.=prqg)l

But otherwise, i.e. with at least one atomic proposition a, there will be cases of strict
equivalence without mutual entailment (e.g. a vV ~o. and NN( )), and of mutual entail-
ment without regular equivalence (e.g. o and a Vv (o A—a)), and of regular equivalence
without semiregular equivalence (e.g. NN( ) V (o A ma) and NN( ) V a V (a A —a)),
and of semiregular equivalence without exact equivalence (e.g. a V —a and a V —a V
(oA —0)). (Material equivalence might here still coincide with strict equivalence: this
happens iff all atomic propositions are rigid.)

EpAp.=t.p.

(For E p A p = A(p) = NN(p).) This is an interesting difference from the linguistic
context of truthmaker semantics where, in the basic notion of truthmaking (similar to
our tm), a truthmaker of ‘p A p’ (fusion of a tm of ‘p’ and a tm of ‘p’) need not be
a truthmaker of ‘p’. (Although actually this can be avoided by changing the relevant
semantic clause by referring now to the set of conjuncts.)

Another ‘anomaly’ of basic and semiregular truthmaking in truthmaker semantics
however does appear equally here in the ‘worldly’ context — viz. the fact that ~* and
~* —and here even ©* — may be destroyed by negation (or dualization):



40 R. BATCHELOR

EpA(QVID)aT/~T/eTpAqV.pATL
E-(pA(@VD)rT/~t/et a(pAgq.v.p AL
EpV(gAanzt/~T/eTpvq.apVr

(E.g., for the cases with ~* and ~*: with the variables interpreted as distinct atomic
propositions, the states corresponding to p A q and p A r will be tms/stms of the r.h.s.
but not of the L.h.s. And for the case with ©*: with p and q interpreted as distinct
atomic propositions and r as N( ), the state corresponding to p A q will be rtm of the
r.h.s. but not of the Lh.s. Note here again a difference between our &' and Angell—
Fine equivalence, for which this distribution principle holds.) (The ‘full’ notions A ~
B and A ~ B and A < B are not of course subject to this ‘anomaly’.)

Note that <™, i.e. —, and <™ do not differ in extension:
Ep—oq.=p<Mq.

— ‘Paradoxes’ of entailment:

FEV()—p.

Ep— AC).

Thus with our formulation of LCPL the ‘Variable Sharing Property’ for entailments
between LCPL formulas does not hold in unrestricted form. (Other violations are
of course E V() = V( ), E A( ) = A( ), E V() = A( ), etc. But these are hardly
‘paradoxical’, as there is no ‘content’ [in the form of variables] at all involved. In
the ‘paradoxes’ above on the other hand there is ‘content’ involved, but no ‘common
content’ in antecedent and consequent. There are also of course ‘paradoxes’ with vari-
ables on both sides [but no shared variables], suchaskp A V() —=>q,Ep—= A()VQ,
etc.) The ‘paradoxes’ of material implication motivated the introduction of the con-
cept of strict implication; but then there were the ‘paradoxes’ of strict implication,
which motivated the introduction of the concept of entailment; but now there are the
‘paradoxes’ of entailment. One is tempted to say: ‘Well, I suppose everything will
have its paradoxes!” — But note that, first, in all these cases the ‘paradoxes’ are not
really paradoxes (hence the inverted commas) but simple laws governing the notions
in question — given what the notions are, it would be paradoxical if these laws didn’t
hold! One may agree that these are bona fide logical notions as far as they go, even
if one might want also to have other notions with somewhat different behaviour. And
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secondly: the present violations of the unrestricted Variable Sharing Property are very
limited: in particular we have (as is easily seen): V formulas A, B of LCPL where
(in primitive notation) N( ) does not occur: If E A — B then A and B share at least
one propositional variable. Nor are these violations ‘unprincipled’: V( ) has no tms,
so of course every tm of V( ) includes a tm of p; and so on. Also it is a sort of basic
tenet of relevance logic that entailment (like other, ‘more classical’ notions) obeys the
principles that a proposition entails a conjunction iff it entails every conjunct, and a
proposition is entailed by a disjunction iff it is entailed by every disjunct; and certainly
any proposition is entailed by every disjunct of the empty disjunction, and entails ev-
ery conjunct of the empty conjunction! — So these ‘paradoxes’ of entailment are so
principled and limited that I would not think it sensible to seek for other notions (just)
to ‘overcome’ these ‘paradoxes’.

(3) Existential import.

E At(p) .D. Existlmp(p) &3 Ep.

F dq (At(q) A p = —q) D OExistImp(p).

EOVp (At(p) A p D Ep) D Vp (p 3 Existlmp(p)).

For suppose the antecedent and that p holds (in a world). Then V{Z : Z tm p} also
holds; whence so does the disjunction of positive parts of truthmakers of p (i.e. omit-
ting the negated atoms). Therefore, by the antecedent, the corresponding disjunction
of conjunctions of existence-attributions also holds; but this disjunction is in effect

ExistImp(p).

It follows that (in contrast with the case of necessarily false propositions where as
we saw the existential import can easily differ):

FOVp (At(p) A p 2 Ep) .D. Op A 0Oq D TExistImp(p) A OExistImp(q) A [therefore]
(ExistImp(p) &3 ExistImp(q)).

11 Principles: Classical ground-theoretic principles

We saw that the usual axioms of ZFC set theory with urelements, except for the Infin-
ity Axiom, translate into correct principles for € in CPL2e. We will now see that often
they also translate into correct principles for 6 in CPL26.

— The Axiom of Extensionality is an exception: indeed we have the negation of
its O-translation as a valid formula:
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(Anti-Extensionality) £ Af 4g (Grounded(f) A Grounded(g) AVh (hOfe— h0g)
ANf#g).

E.g. take A(A( )) (i.e. NNNN( )) and N(N( ), A( )): the immediate grounds are the
same, viz. A( ) = NN( ) only, but the two facts are of course different.

(Foundation, a.k.a. Regularity) £ Vf (Grounded(f) —» dg (g0 f A -3Jh(hBgAh
0 ).

(Pairing) EVfV¥gdhVi(iBhei=fvi=g).

(E.g. take A(f, g).)
(Separation Schema) £ Vf g Vh (h 6 g & h 0 f A @(h)).

(E.g. take the conjunction of the immediate grounds of f which satisfy condition ¢.)
(Union) e ¥fAgVh (h 0 g & h 62 ).

(E.g. take the conjunction of the immediate grounds of immediate grounds of f.)

— A more general principle says that if the facts satisfying ¢ are ‘G-bounded’ then
there is a fact of which they are the immediate grounds:

FIfVe(p(g) > gG ) — Ve (0 f o @)
(E.g. take the conjunction of the facts satisfying ¢.)

(Choice) E Yf: Grounded(f) A Vg 0 f (Grounded(g)) A VgVh (g0 fAhOfA g+
h—-3i(i0gAi0h)—>dgVhofAliiOgAiOh).

(Choose an immediate ground of each immediate ground of f, and conjoin these facts.)
(Replacement Schema) e Vf: Yg 0 f Ath (g, h) - dgVh (h 6 g & i 0 f ((i, h))).
(Take the conjunction of the facts h such that ¢(g, h) for some g 6 f.)

— The direct correlate of the Power-Set Axiom fails in an interesting way. Put
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A Y B [‘A is a 0-subproposition of B'] =g¢ Yf(f0 A — 0 B).

(If this holds and both A and B are facts, we may say also that ‘A is a 0-subfact of
B’.) Then the direct correlate of the Power-Set Axiom is

VfIgVh(h 0 g e hcd o).

But this is not valid. Take e.g. a fact f = =——p, whose only immediate ground is —p;
so a fact is a B-subfact of f iff it has no grounds or has only —p as immediate ground;
but this includes e.g. all facts of the form N(p, q) where q is an arbitrary fact; and so
the O-subfacts of f are not ‘bounded’ and so there can be no fact having them all as
immediate grounds.

One way to ‘repair’ the principle is to require not all 0-subfacts as immediate
grounds of the new fact, but only one ‘representative’ for each subcollection of im-
mediate grounds of the original fact. I.e. we have:

EVFAgVYhc® fAi0gVj(Oie]joh).

(E.g. take the conjunction of: for each subset S of the set of immediate grounds of f,
the conjunction of the facts in S.)

12 Principles: Modal ground-theoretic principles

(1) Necessitation from Immediate Grounds. The idea here is that: a grounded fact is
always necessitated by the joint obtaining of its immediate grounds (i.e. strictly im-
plied by their conjunction). — But some care is needed for a proper formal statement of
this idea: there must be here a kind of ‘back-reference to the actual world from within
the scope of a modal operator’, for what does the necessitating is the conjunction of
the de facto immediate grounds, not the conjunction of what would be the immediate
grounds in alternative circumstances. Thus the naive formulation

Grounded(p) — (¥q((q 6 p) = @) 3 p)
is not a valid formula: if p is say ——r where r is a contingent truth, then the strict
implication above does not hold, since if p had been false (as it can be) it would be

vacuously true that all its immediate grounds are true.

Proper formulations can be given in at least two different ways here. One is the
following £55%¢0 formula using the ‘purely collecting capacity’ of neconjunctions:
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F Grounded(p) — ds [Vq(qes < qOp) A (Vges(q) 3p)l.

And the other is the following £5526 formula (so preferable to the above at least in so
far as it does not use €) where we make straightforward ‘back-reference to the actual
world’ at the appropriate place:

£ Grounded(p) —» dw [w A Yq(W 3(q O p).—.q 3p)l.

— There is also a similar principle of ‘Necessitation from ALL Grounds’. Proper
formulations are given by simply replacing 6 by G in the two valid formulas displayed
above. Of course Necessitation from Immediate Grounds implies Necessitation from
All Grounds.

(2) Implicational Connectedness of (Immediate) Ground and Grounded. A groun-
ded fact can be of ‘broadly conjunctive’ character or of ‘broadly disjunctive’ character
(or both, as with double negation). In the former case the grounded fact will imply
the immediate ground, and in the latter case the immediate ground will imply the
grounded fact. So:

FpOq—(p-39.vV.q-3p).

(3) Semi-Rigidity of Immediate Ground. ‘If a fact is an immediate ground of an-
other, then it is so still in any world where both obtain’:

FpOgq—((pAQ3(pBQ).

The corresponding statement for general ground (G) is of course not valid. Take
e.g. pV(q A 1), with p, q, r say independent atomic facts: then as it happens q is
a ground of p V (q A r), but these are both true without the grounding holding in a
world where p is true, q true, but r false. — In such cases as we may say the actual 0-
chain is ‘broken’ (in another world). What we do have is the restricted schema (n > 2):

FprOp2Op30...0pn— (p1 A...Apn 3p1 Gpn)
This follows of course from the earlier principle of Semi-Rigidity of Immediate Ground.

(4) Strengthened forms of Semi-Rigidity of Immediate Ground. Actually we can
say more: for according as the grounded fact is of ‘broadly conjunctive’ or ‘broadly
disjunctive’ character, the obtaining of the grounded fact alone, or of the grounding
fact alone, will necessitate the grounding connection. So we have:
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FpOq—-[p3(06q.v.q3(p 0Ol

— Since grounding is of course ‘factive’ (only facts can ground or be grounded), this
can be strengthened further to

FpOq—[p&3(pOq.v.qe3(p O]

(Also in the initial form of the principle in (3) above -3 can be replaced by £3.
The same is not true however for the subsequent schema with G: consider e.g. (p A q)
V (p A r) with p, g, r independent atomic facts —thenp O (p Aq) 0 =—=(p A q) 0 ((p A

QPVPAD))[=NE(PAQ, (pA)],butp G ((p AQq)V (p Ar)) does not strictly
imply p A (p A q) A ...; for the grounding could go only ‘via’ p A 1.)

13 Conditions on frames

It is interesting to consider various kinds of special conditions on frames, and the
question of to what extent such conditions can be ‘represented’ by formulas of ZHPL.
The present section is illustrative of this, though far from exhaustive — obviously much
more can be done along these lines.

A (basic, modal, existential, or full) frame F = (At, Mol, wy, ... ) is Cantorian if
Mol contains as an element some infinite set.

Proposition. ¥ is Cantorian iff F verifies the sentence
dp: dq(qep) AVqepdrep(qer). O

A (modal, or full) frame ¥ = (At, Mol, wg, W, ... ) is Tractarian if W is the set of
all functions from At to {T, F}. (I.e. all truth-value combinations for atomic proposi-
tions are considered as possible, as in Wittgenstein’s Tractatus.)

Proposition. F is Tractarian iff ¥ verifies the sentence

dp: Yq(qep < At(q) A
Vg [Mol(g) AVreq(rep) = ¢(Vreq(@) AVr(repA-(req) — —r))]. O

Remarks and Questions. The £S5 formulas which are HPL-valid are precisely
the ones which are valid w.r.t. the usual possible world semantics for S52. But there
are £S5% formulas which are valid w.r.t. Tractarian frames and yet not HPL-valid
or equivalently possible-world-semantics valid. An example is (where w, v, u, z are
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world-proposition variables):

—AwAvIdu: - (WESB VA - (WSBSWDA(VESBSUW)AYZ(zE3W)V(z83V)V
(z 83 u)).

Le., roughly speaking: The number of worlds is not 3. — For if the atomic propositions
are independent then the number of worlds must be here 2 to the power of the number
of atomic propositions, and 3 is not 2 to the power of anything.

The similar situation would occur in a more elementary ‘atomic proposition’
(rather than ‘possible world’) semantics for S52, where instead of having an arbitrary
non-empty set W (‘worlds’) and attributing elements of (W) to the propositional
variables, we have rather an arbitrary (possibly empty) set A (‘atomic propositions’)
and attribute elements of P(#(A)) to the propositional variables.

I conjecture that:

(1) An £S52 formula @ is valid w.r.t. Tractarian frames iff ¢ is valid w.r.t. this
‘atomic proposition semantics’.

(2) A complete (and of course sound) axiomatization for such valid formulas can
be obtained by enriching the usual axiomatization of S52 (as e. g. in Fine 1970) by the
instances of the schema generalizing the above formula in the obvious way to state
that ‘The number of worlds is not n’ for n not a power of 2.

(3) For any £852 formula ¢, the following conditions are equivalent:

(i) @ is valid w.r.t. Tractarian frames with infinitely many atoms;

(i1) ¢ is valid w.r.t. atomic proposition semantics models with infinite set of atoms;

(iii) @ is valid w.r.t. possible world semantics models with infinite set of worlds. 4

An alternative conception of atomic propositions holds that they come in ‘clusters’
consisting of attributions (to given individual or individuals) of the different ‘deter-
minate’ properties (e.g. specific colours) falling under a certain ‘determinable’ (e.g.
colour), so that within a cluster it is necessary that there is exactly one truth, but
‘across’ clusters there is complete modal independence. (See e.g. Prior 1949 and Fine

2011.) This suggests the following definition.

A (modal, or full) frame ¥ = (At, Mol, wq, W, ...) has determinable/determinate
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structure, or more briefly is determinable/determinate, if there exists a partition £ of
At (i.e. collection of disjoint non-empty subsets of At whose union is At) such that
W= {weAYT,F}: V[ e P Ao el (wa)=T)}.

This condition too corresponds to a single sentence of LHPL, indeed of £S5%.
Since the sentence is rather long, we will use for heuristic convenience variables I', A,
etc. for ‘sets’ (i.e. officially neconjunctions) of propositions, and variables X, Y, etc.
for ‘sets of sets’ (i.e. neconjunctions of neconjunctions) of propositions, and accord-
ingly € in place of the official €. We use also some other obvious abbreviations.

Proposition. F is determinable/determinate iff ¥ verifies the sentence:

dX: X is partition of At A VI [AA CAt: T =AU {-p: peAt—A}) .—.
oVpel' (p) o VAeXAlpe A(pel)],

where ‘X is partition of At’ stands for

ArTeX)AVI eXVpeT Atp) AV e XdpeT' AVp (At(p) » AT e X (p
el)). o

Remark. Note that no frame at all is both Tractarian and determinable/determinate.
When At = 0, the frame is trivially Tractarian and trivially not determinable/determi-
nate (since there is then no partition of At i.e. collection of disjoint non-empty sub-
sets of At ...). If At is a singleton {a}, the frame is: Tractarian and not deter-
minable/determinate if W contains wg and the other truth-value assignment to o;
determinable/determinate and not Tractarian if W = {wg} = {{(a, T)}}; and neither
Tractarian nor determinable/determinate if W = {wq} = {{({a, F)}}. Finally, suppose
At has two or more elements and is Tractarian: so in particular distinct atoms o and 3
are always independent; so a candidate partition for determinable/determinate struc-
ture would have to consist of unit-blocks; but then every atom would be necessary,
contradicting Tractarianess. -

An (existential, or full) frame ¥ = (At, Mol, wg, maybe W, &) is attribute-
actualist if Yo € At: Yw € W (or € {wg} in case of mere existential frame): If w(a) =
T then w € &(a). (I.e. atomic facts must exist.) (For suppose [property-actualism, or
better attribute-actualism] that ‘individuals’ cannot have basic properties or enter into
basic relations unless they exist; then if p is an atomic fact then its individuals will
exist, and so p itself will exist if we equate existence of the proposition with existence
of its constituents. [The property or relation in p is presumably either a necessary
existent, or at least a contingent existent given that it is instantiated.])
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Proposition. (1) An existential frame ¥ is attribute-actualist iff ¥ verifies the
sentence

Vp (At(p) A p — Ep).
(2) A full frame ¥ is attribute-actualist iff ¥ verifies the sentence

oVp (At(p) Ap — Ep). O

14 Weak fragments: Propositional identity

We consider here the weak fragments of HPL where only propositional identity is
added to the basic resources of CPL, or alternatively of S5. We are then in a com-
paratively very ‘controlled environment’, i.e. the conceptual apparatus is very weak
compared to the full resources of our HPL, and so this will embolden us to try the ‘ex-
periment’ of extending the scope of transparency by allowing ‘free rein’ to the identity
sign. (So strictly speaking these will not be exactly fragments of HPL but extensions
of fragments.) Thus the formulas of what we will call CPL=(+) are defined by:

(1) Propositional variables are formulas;
Q) If Xq, ..., Xy (n > 0) are formulas then so is N(X1, ..., Xp);
(3) If X and Y are formulas then sois X = Y.

And the formulas of S5=(+) are defined by the same clauses plus: (4) If X is formula
then so is OX.

Questions concerning the ‘identity of identities’ (i.e. the internal constitution of
identity-propositions) and the ‘identity of necessitations’ (constitution of modal propo-
sitions) then becomes statable, and the issue arises of how our formal semantics will
deal with such questions.

One option is to construct a semantics which remains neutral as to any ques-
tions which might receive different answers under different (reasonable) theories of
the constitution of identity-propositions and modal propositions. Thus e.g. neither the
formula (p = q) = (q = p) nor the formula (p # q) — ((p = q) # (q = p)) would count
as valid under such a semantics; although (p = q) — ((p = q) = (q = p)) would count
as valid since it follows from a principle of substitution of identicals which no rea-
sonable theory could deny. (The semantics in Bloom & Suszko 1972 is of this neutral
kind.)
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Another option is to assume some specific views as to the constitution of identity-
propositions and modal propositions and build the semantics based on that. The as-
sumptions may be based on conviction, or simply on curiosity as to where they might
lead.

For instance, one might assume a primitivistic view on both identity and neces-
sity: that identity and necessity are simple, unanalyzable notions that enter as basic
‘building blocks’ in the corresponding propositions. Within such a view, there is still
room for disagreement, notably on whether or not there is some kind of ‘order’ or
something similar among the ‘relata’ of identity in the identity-proposition, and cor-
respondingly whether (p # q) = ((p =q) # (q =p)) or else (p = q) = (q = p) should
count as valid.

Or again, one might assume some non-primitivistic views on identity or modal-
ity or both. Then the supposed analyses may or may not correspond to something
we can ‘write’ in the limited resources of CPL=(+) or S5=(+). E.g. the Leibnizian
analysis of identity in terms of possession of the same properties (in some sense of
‘property’), or the analysis of necessity in terms of truth in all possible worlds — these
do not correspond to anything we can write here. On the other hand a certain neat
‘truth-functionalist’ analysis would correspond very directly to the validity of the fol-
lowing £S5=(+) formulas:

p=q.—. (p=q)=N(p, Np).

p#q.—. (p=q) = Ap, g, Np, Nq).

Op .—. Op = N(p, Np).

—0Op .—. Op = A(p, Np).

Or one might prefer to think that, unlike truth-functions, identity and necessity

have some kind of ‘transcendental’ character but still want to use a variant of the
above ‘reduction’ of necessity:

Op .—. 0p = (p =p).
-0p.—.Op=(p #p)-
(Or alternatively one might want to ‘reduce’ identity to modality: one can then just

insert 0 before N(p, Np) and before A(p, g, Np, Nq) in the above ‘truth-functionalist’
reductions of identity.)
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— I consider several such different approaches worth pursuing; also comparisons
of the resulting systems would be interesting. Here however I will develop only one
approach, namely the approach based on primitivism about both identity and neces-
sity, and where there is not supposed to be order or anything like it among the terms
of the identity-proposition, so that (p = q) = (q = p) will count as valid (much in-
deed as N(p, q) = N(q, p) has counted and will continue to be counted as valid for
us). This is not at all because I am inclined to a primitivist view on either identity or
necessity (I am not); but rather because I think that, if we are going to take seriously
identity and necessity as proposition-forming connections, then the primitivist view
seems a natural choice for starting-point for speculative investigations. On the other
hand the thesis of absence of order or the like in identity-propositions, modulo primi-
tivism about identity, is something I am inclined to hold. (See Batchelor 2018 for an
extensive discussion of such issues.)

— We proceed now to the presentation of our semantics for CPL=(+). The modal
extension to S5=(+) will be given immediately afterwards.

Intuitively, the basic ideas are as follows. Propositions are supposed to have es-
sentially the same structure as formulas of CPL=(+) (as far as their composition by
finitary truth-functions and identity is concerned), except that (i) difference in the or-
der of terms in an identity-formula is not supposed to correspond to any difference
in the corresponding proposition, and (ii) same for differences in order and/or (posi-
tive) number of occurrences of neconjuncts in a neconjunction. — So we will set up
a language which is ‘isomorphic’ to LZCPL=(+) in order to interpret the formulas of
LCPL=(+). This new language we will call the onto-language, since it is meant to
approximately model the propositions, in the world, which will serve to interpret our
‘linguistic language’ LCPL=(+). Truth of identities in the onto-language will then be
understood as literal identity of the expressions flanking the identity-sign modulo only
the differences indicated in (i) and (ii) above. (It would have been possible to consider
LCPL=(+) itself as the onto-language; but the procedure adopted here seems to me
more perspicuous.)

The formulas, or better sentences, of this onto-language are then defined as fol-
lows. There are the atomic sentences o, B, v, d, o/, p’, ...; and other sentences
(molecular sentences) are built by applications of = (to two sentences) and N (to n
sentences, n > 0). Thus the sentences of the onto-language are exactly like the formu-
las of LZCPL=(+), except that now we have these atomic sentences a, {3, ... in lieu of
the propositional variables p, q, . ..

For ¢ and 1 sentences of the onto-language, we say that ¢ is orthographic variant
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of 4 (or that ¢ and 1 are orthographic variants, since the notion is clearly symmetric)
if ¢ can be obtained from { by zero or more applications of the following types of
transformation:

(i) interchange of sentences flanking an occurrence of =;

(i1) changing N(y1, ..., Yp) to N(q, ..., @) provided {1, ..., Yn} ={P1,..., Ok }.

— Now by a valuation (for the onto-language) we mean an assignment of truth-
values to the atomic sentences.

A valuation induces then an ‘extended valuation’ for all sentences of the onto-
language:

(1) the truth-values of aromic sentences are given;

(ii) truth-values of N compounds are determined in obvious way;

(iii) @ = is true iff @ is orthographic variant of 1. (Note that this is independent
of truth-values of components. Thus ¢ = 1 is always either true under all valuations
or false under all valuations.)

So much for the onto-language itself. Coming now to the semantics for CPL=(+)
proper, we define an interpretation as a function from the propositional variables to

sentences of the onto-language. Such an interpretation o automatically induces an
extended function from all formulas of LCPL=(+) to sentences of the onto-language:

o(@ =y) = o(@) =o(y).

O(N(@1, ... ¢n)) = N(o(@1), ..., o(¢n)).

For interpretation o, valuation v, formula ¢ of LCPL=(+):

(o, v) verifies ¢ =gf o(¢p) is true under v.

F¢ =gf VYo, Vv: (0, V) verifies ¢.

I' (€ LCPL=(+)) is satisfiable =g¢ do, v: Yo € I': {0, v) verifies @.

I'implies @ =4f Vo, v: If (o, v) verifies all the formulas in I" then (o, v) verifies ¢.



52 R. BATCHELOR

— We have then e.g.:
FE(p=q@=(Q=p).
Fp#q.—.(p=p)#(q=9).

Remarks and Questions. (1) I conjecture that, for formulas of the restricted lan-
guage LCPL=, the notion of consequence (I" implies ¢) (hence also validity, satisfia-
bility) as defined here in this ‘syntactical semantics’ coincides extensionally with the
notion of consequence defined in terms of our earlier ‘set semantics’ (‘basic frames’).

(2) The set semantics can be extended to full LZCPL=(+) by use of the ideas in
the ‘truth-functionalist reductions’ mentioned in the previous discussion above. The
definition of hyperintensional values would be extended to identity-formulas by the
condition:

o(@ =) = {o(p), {o(@)}} or {{o(@), {o(@)}, o(), {o()}}}, according as o(¢p)

= o() or not.

This would of course yield a different system: e.g. the formula

(p =p) = N(p, Np)

would be valid in this set semantics, but not in the syntactical semantics — indeed in
the syntactical semantics the negation of this formula is valid. — Nor is there surely
any other way, essentially different from this reductionistic way, of extending our set
semantics to LCPL=(+) without the addition of further apparatus. — Note also that
in this set-semantics CPL=(+) there is a straightforward ‘reduction’ to CPL=, in the
sense that Yo € LCPL=(+) 4y € LCPL= such that (in this set-semantics) F ¢ < .
The following example should suffice to illustrate the reduction method: an identity
A = (B = C) is here equivalent to:

B=CAA=N(@B, -B).v. =«(B=C) A A = A(B, C, =B, -C).

— In syntactical-semantics CPL=(+), by contrast, it seems clear thate.g. p = (q =r) is
not equivalent to any £CPL= formula, so that there is no such ‘reduction’.

(3) LCPL= and LCPL=(+) are very simple languages and so decidability for va-
lidity in systems in such languages can very realistically be hoped for. — So are the
systems described here decidable? (CPL= with syntactical semantics, CPL= with set
semantics [if this gives different valid formulas], CPL=(+) with syntactical semantics,
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and CPL=(+) with set semantics as in remark (2) [this is of course equi-decidable with
CPL= with set semantics in view of the existence of (mechanical) reduction method].)

(4) It would be interesting to have an axiomatization of (syntactical-semantics)
CPL=(+). Some obvious candidate axiom-schemas here (to be adjoined to postulates
for CPL) are:

Orthographic Variants Schema: ¢ =1, for ¢ orthographic variant of 1.

Identity Criterion for Neconjunctions:

N(@1, -5 @n) =N, o, Yp) o (@ =Y V... V@O =YP) A A (Qn =Yg
VooV on =P AW =@ V...VYP1 =@n) A ... A (P = @1 V...V Pg = @p).

Identity Criterion for Identities:

(@1 =02) = (Y1 =Y2) .. (@1 =P1 A2 =P2) V(91 = Y2 A @2 =Yy).
Principle of Substitution of Identicals:

(¢ =) = (x =x"), where ’ results from y by replacement of occurrences of ¢
by .

(5) Comparisons with some other systems of Classical Propositional Logic with
propositional identity in the literature (e.g. Bloom & Suszko 1972 [and later literature
following up on this paper], Church 1984) might be interesting.

We sketch now the extension of the above syntactical semantics to the modal sys-
tem S5=(+).

The (new) onto-language is exactly as before only now the language also con-
tains the unary connective O. A valuation is now a non-empty set of truth-value
assignments to the atomic sentences, with designated element. This then has a natural
extension to a set of truth-value assignments with designated element for all sen-
tences. (The value for O¢ in an assignment in the set is T iff the value of ¢ is T in
all assignments in the set. The value of ¢ = 1 in an assignment is T iff ¢ and  are
orthographic variants in the sense exactly as before.) A valuation v verifies a sentence
¢ of the onto-language if ¢ receives T in the designated element of the extended val-
uation induced by v.

An interpretation is a function from the propositional variables to sentences of
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the onto-language. Again this automatically extends to a function from all formulas
of £S5=(+) to sentences of the onto-language. Then the definitions of (o, v) verifies
@’, validity etc. are exactly as before.

We have then e.g.:
FA(P=q).
F(@p=0q) — (p=9.

Remarks and Questions. The previous Remarks and Questions in classical case
all have close analogues here: (1) I conjecture the equivalence of this syntactical
semantics and the set semantics for £S5=; (2) The set semantics can be extended
to full £S5=(+) using the ‘truth-functionalist reductions’ (and also a semantics for
LCPL=(+) might be extended to a semantics for £S5=(+) using the ‘reduction’ of
necessity to identity mentioned above); (3) There are the questions of decidability; (4)
It would be interesting to have an axiomatization of S5=(+); (5) Comparisons with
other literature might be interesting. — Concerning (4), note that:

(1) A natural addition to the earlier ‘classical’ axiom-schemas is: Identity Crite-
rion for Necessity Propositions: (Op = 0Oq) < (p = Q).

(ii) With reasonable postulates, the rigidity of identity (A(p = q)) can be derived
as a theorem: By the Orthographic Variants Schema, we have  p = p; so by Neces-
sitation, + O(p = p); then from this by Substitution of Identicals (using the instance p
=q— (O =p) < O@p =q))) we have - p = q — O(p = q); so by Necessitation F
O(p = q — O(p = q)); and so by S5 (recalling that O(p — Op) is equivalent to Ap)
A(p = q). (Note incidentally that this argument illustrates the interesting general fact
that there cannot be an extension of S5, with the Necessitation Rule in force, by a
‘half-rigid’ connection, i.e. one where true attributions are always necessary but not
false attributions always impossible or vice versa. O(—p — O-p) is also equivalent to
Ap.) 4

15 Weak fragments: Propositional existence

We consider now the weak fragments of HPL where only propositional existence is
added to CPL, or alternatively to S5. Again (as in the fragments with propositional
identity), in this ‘controlled environment’ we will extend the scope of transparency
by allowing ‘free reign’ to the existence symbol; and we will adopt ‘methodological
primitivism’ about both existence and necessity as guide for the construction of the
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semantics.

Thus now the formulas of what we will call CPLE(+) are defined by:

(1) Propositional variables are formulas;

) If Xy, ..., Xy are formulas (n > 0) then so is N(X1, ..., Xp);

(3) If X is formula then so is EX.

And for the formulas of SS5E(+) we add: (4) If X is formula then so is OX.

Semantics for CPLE(+). In addition to the familiar truth-values T and F, we use
here the existence-values E (existence) and E (non-existence), and the combined truth-
existence values ET (existent truth), ET(non-existent truth), EF (existent falsity), EF
(non-existent falsity).

An interpretation is then an assignment of truth-existence values to the proposi-
tional variables. This is of course tantamount to a pair consisting of (i) an assignment
of truth-values and (ii) an assignment of existence-values; and sometimes it is more

convenient to think in terms of such an assignment-pair.

An interpretation ¢ then induces an assignment of truth-existence values (or cor-
responding assignment-pair) to all formulas in the obvious way:

(1) N(eq, - .., @p) exists iff all of @y, ..., @q exist;

(i1) N(@q, ..., ¢p) is true iff not all of @y, ..., g, are true;

(iii) Eg exists iff ¢ exists;

(iv) Eq is true iff ¢ exists.

We say that interpretation o verifies formula ¢ if o(¢) € {ET, ET}. ¢ is valid, or
E @, if every interpretation verifies ¢. I" implies « if every interpretation which veri-
fies every formula in I verifies ¢. I is satisfiable if there exists interpretation which
verifies every formula in I'.

As in other, more familiar cases (e.g. the standard truth-value semantics for CPL),

here what an interpretation ¢ assigns to a formula ¢ ‘depends only’ on what o assigns
to the propositional variables which actually occur in ¢ (i.e. Yo, 0’: if 0 and o’ agree
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on such variables then o(¢) = 0’(¢)). So whether or not a given formula is valid can
be mechanically decided by means of a ‘truth-existence table’. E.g.:

p | N(p) Ep EN(p) Epe EN(p)

ET | EF ET ET ET
ET | EF EF  EF ET
EF | ET ET ET ET

EF | ET EF  EF ET

So Ep < EN(p) is valid, or as we might also say a fruth-existence tautology. (Of
course « is here defined in terms of N, and in constructing the table above we use the
truth-existence value rule for < derived from the definition and the basic rule for N.)

Remarks. (1) It seems clear that, for formulas of the restricted language LCPLE,
consequence in the sense of the present ‘truth-existence value semantics’ coincides
in extension with consequence in the sense of our earlier ‘set semantics’ (‘existential
frames’).

(2) Reduction of CPLE(+) to CPLE. Clearly for every formula ¢ of LCPLE(+)
there exists a formula { of LCPLE s.t. £ ¢ < 1. For we can just say replace each
occurrence of formula Ex(py, ..., pn) in ¢ not in the scope of a further occurrence of
E —replace this, I say, by Ep; A ... A Epy (including as limiting case A( ) if n =0, i.e.
if ¢ contains no variables). (So indeed even applications of E to non-atomic formulas
are not needed.)

(3) Axiomatization. The obvious axiomatization of CPLE(+) is by (in addition to
postulates suitable to CPL) the schemas

EN(®q, ..., ¢n) © AE@q, ..., Epn)
(including as limiting case EN( ) & A( ), i.e. in effect EN( )) and
EEgp < Eg.

It is straightforward to prove by Kalméar’s method that every valid formula of LZCPLE(+)
is a theorem of this axiom-system. (I.e. the axiom-system is ‘weakly complete’. Since
no doubt Compactness holds here, ‘strong completeness’ follows.)

(4) Logical function theory. For n > 0, an n-ary truth-existence function is a
function f from {ET, ET, EF, EF}" to {ET, ET, EF, EF} satisfying the condition that
f(vy, ..., vp) € {ET, EF} iff Vi = 1, ..., n: v; € {ET, EF} (i.e. the value of the func-
tion ‘exists’ iff all the arguments do). We may say that a truth-existence function f is
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a truth-function if the truth-value of a value of f is always determined by the truth-
values of the arguments (in the obvious sense of these words); and that f is a purely
existential function if the truth-value of a value of f is always determined by the ex-
istence-values of the arguments; and that f is hybrid if f is neither truth-function nor
purely existential function. Thus e.g. N (i.e. n-ary neconjunction) is always a truth-
function; E (i.e. the unary truth-existence function corresponding to the connective
E) is a purely existential function; and —=p A Ep (i.e. the function expressed by this
formula) is hybrid. — The set {N" : n > 0} U {E} is ‘functionally complete’, i.e. every
truth-existence function is expressed by some formula of LCPLE(+). For given an
arbitrary truth-existence function f, we can take the disjunction of the ‘characteristic
formulas’ of rows of the truth-existence table corresponding to f which (the rows)
have T (i.e. ET or ET) in the value-column. (If e.g. a row gives ET to p and EF to q
and these are all the variables present, then its ‘characteristic formula’ is (—Ep A p) A
(Eq A =q).) Also e.g. {N°, N2, E} is complete, as all N” for n > 0 are definable from
N2 alone. The mere {N2, E} however is not complete, since no zero-ary function is
definable (in what seems to me to be the most natural sense of the term in this context)
from non--zero-ary functions alone. (But if ‘truth-existence function” were redefined
so as to exclude zero-ary functions altogether then (N2, E} would be complete.) -

Semantics for SSE(+). An interpretation is now a non-empty set of truth-existence
value assignments to the propositional variables, with designated element. This then
induces a set-of-assignments-with-designated-element for all formulas in a natural
way: O exists w.r.t. an assignment in the set iff ¢ exists; O is true w.r.t. an as-
signment in the set iff ¢ is true w.r.t. all assignments in the set; and the conditions
of existence and truth for N and E are as before. Interpretation o verifies formula ¢
if the designated element of (extended) o gives ET or ET to ¢. ¢ is valid if every
interpretation verifies ¢; and similarly for consequence and satisfiability.

Again, whether an interpretation o verifies a formula ¢ depends only on the re-
striction of ¢ to the variables actually occurring in ¢. This can be represented in what
we may call the truth-existence-modal table for the formula ¢, constructed as follows.
We write the subformulas of ¢, right to left, in decreasing order of complexity until
we reach variables (as with truth-tables); then under the variables we write first a “full
subtable’ consisting of all the attributions of truth-existence values to the variables (as
in the classical truth-existence table), then all the ‘subtables’ where some (but not all)
of the rows of the full subtable are omitted (a subtable then represents a non-empty
set of assignments of truth-existence values to the variables, and a row within such
subtable the interpretation, i.e. set of assignments with designated element); we then
“fill in’ the truth-existence values for the compound formulas, left to right, column by
column, in accordance with the conditions indicated above for extending an interpre-
tation. So the formula ¢ is valid, or a ‘truth-existence-modal tautology’, iff all entries



58 R. BATCHELOR

in its value-column are ET or ET.
As example we give here the truth-existence-modal tables for the statements of

‘plain’ necessity Op, strong necessity 0°p (= O(Ep A p)), and weak necessity ka (=
O(Ep — p)):

p |Op | Ep | EpAp | OEpADP) | Ep—p | O(Ep — p)

ET | EF | ET | ET EF ET EF
ET | EF | EF | FF EF ET EF
EF | EF | ET | EF EF EF EF
FF | EF | EF | FF EF ET FF
ET | EF | ET | ET EF ET EF
ET | EF | EF | FF EF ET EF
EF | EF | ET | EF EF EF EF
ET | EF | ET | ET EF ET ET

ET | EF | EF | FF EF ET ET
EF | EF | EF | EF EF ET ET
ET | EF | ET | ET EF ET EF
EF | EF | ET | EF EF EF EF
FF | EF | EF | FF EF ET FEF
ET | EF | EF | FF EF ET EF

EF | EF | ET EF EF EF EF
FF | EF | EF | FEF EF ET FF
ET | ET | ET ET EF ET ET
ET | ET | EF | FF EF ET ET
ET | EF | ET ET EF ET EF
EF | EF | ET EF EF EF EF
ET | EF | ET ET EF ET ET

EF | EF | EF | FF EF ET ET
ET | EF | EF | EF EF ET EF
EF | EF | ET | EF EF EF EF
ET | EF | EF | FF EF ET ET
EF | EF | EF | FEF EF ET ET

EF | EF | ET | EF EF EF EF
EF | FF | EF | FF EF ET EF
ET | ET | ET | ET ET ET ET
ET | ET | EF | EF EF ET ET
EF | EF | ET | EF EF EF EF

EF | EF | EF | EF EF ET ET
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Remarks and Questions. (1) I conjecture that, for £LS5E formulas, consequence
in the sense of this truth-existence-modal value semantics coincides in extension with
consequence in the sense of our earlier set semantics.

(2) Reduction of S5E(+) to SSE. Again, clearly Yo € LS5E(+) dy € LS5E:
F @ < 1. As before in classical case, we can just replace outermost existence-
attributions by the corresponding conjunctions of existence-attributions to variables.

(3) Axiomatization. To the previous axiomatization of CPLE(+) we add postu-
lates suitable to S5 and the axiom-schema

Eog < Eg.
The earlier completeness argument also extends straightforwardly enough.

(4) Logical function theory. For n > 0, an n-ary truth-existence-modal function
is a function f assigning a truth-existence value to each non-empty set of n-tuples
of truth-existence values with designated element, and satisfying the condition that a
value of fis in {ET, EF} iff all terms of the designated element of the argument are in
{ET, EF}. This corresponds now to a truth-existence-modal table. Similar remarks as
before in classical case apply again here. The ‘characteristic formula’ of a row is now
the conjunction of:

(i) the conjunction of attributions of truth-existence values to the variables corre-
sponding to the given row;

(ii) the possibilizations of (i.e. results of prefixing ¢ to) such conjunctions corre-
sponding to the rows present in the subtable; and

(iii) the impossibilizations of such conjunctions corresponding to the rows absent
from the subtable.

Then again disjunctions of such formulas will serve to express arbitrary truth-existence-
modal functions. So e.g. {N°, N2, E, 0} is ‘functionally complete’. 4
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