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Abstract

In [2] the author presents two paraconsistent three-valued logics in
which neither the explosion principle nor the principle of non-contradiction
hold. We study here one of these logics, SP3B, which is defined in terms
of three connectives ¬, ∧, ∨. We define a non-primitive implication that
preserves tautologies under Modus Ponens, we prove that the set of con-
nectives in SP3B and the set of connectives in the paraconsistent logic
CG′

3 are functionally equivalent and prove a weak form of the substitu-
tion theorem for SP3B. We also provide an axiomatization of SP3B that
contains properly logic C1.
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Introduction

The law of non-contradiction seems to represent such a natural tool in the way
we think and construct arguments that it would be, at least at first thought,
impossible to conceive the idea of debating its validity. This fundamental
character of the law, however does not seem to hold with the same strength as
once did. In [3] the authors argue that it is possible to reject this principle and
they show how to proceed; they also note that some of the ideas about logical
non-apriorism have been already presented in works by Von Neumann, Hilary
Putnam and Newton da Costa, in particular they present the case of quantum
Mechanics, a theory that does not seem to adapt well to classical logic, but to
a logic defined in terms of a-posteriori considerations. In the foreword of [16]
Graham Priest talks of cultures where contradictions are interpreted in such
a way that they become consistent, or they become two different alternative
truths, such considerations are discussed in Conze’s book about the law of
non-contradiction, written in 1930 and recently translated by Holger R. Heine
[16]. [7] explores interpretations of contradictions at the level of semantics but
also at the level of metaphysics, and it poses one question: what does it mean
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to say that a contradiction is real? Some other works where the importance of
the law of non-contradiciton is discussed are [17, 18].

Arguments in favor of rejecting the law of non-contradiction have been
supported more recently by the research done on paraconsistent logics and
the applications they have encountered, in particular, in artificial intelligence.
Paraconsistent logics accept inconsistencies without presenting the problem
that once a contradiction has been derived, then any proposition follows as a
consequence, as is the case of classical logic.

The importance of non-monotonic reasoning in the study of knowledge
representation, an important aspect of artificial intelligence, has been par-
tially responsible for the relevance taken by paraconsistent logics in the field
of mathematical logic. Two major classes can successfully be used to model
non-monotonic reasoning. On one side the constructive intermediate logics,
like intuitionism and Gödel logic G3 [15], and on the other side, the paracon-
sistent logics like Cω [4], and G′3 [12]. These logics can provide mathematical
bases to define semantics in knowledge representation, for example, G3 is ad-
equate to express the stable model semantics, also called semantics of answer
sets [15] which is one of the main semantics in non-monotonic reasoning. A
similar result shows that the paraconsistent logic G′3 can express the p-stable
semantics, an alternative to the stable semantics that in some sense is closer
to the semantics defined by classical logic [14]. G′3 was originally defined as a
three-valued logic with the same truth tables as those for logic G3 except in
one value for the negation connective. Further properties of G′3 were studied
in [11] where an axiomatization of G′3 is presented, that is, a soundness and
completeness theorem is presented for G′3 and a Hilbert style axiomatic system
defined there. Among other results, it is also shown that G′3 can express logic
G3.

Apparently there is no general consensus as to what a definite definition of
paraconsistent logic must be, but it is universally accepted that one property
must be present in any paraconsistent logic, namely, the logic must reject the
explosion principle, which means that the formula (p ∧ ¬p) → q should not
be valid. Logics like Cω [4], Z, G′3, CG

′
3 [12], C1 [5] are paraconsistent since

the explosion principle is not valid in any of them. More recently, Beziau [2]
defines two 3-valued paraconsistent logics, for which the formula ¬(p ∧ ¬p) is
not a tautology, and argues that a paraconsistent logic that has this property:
the rejection of the principle of non-contradiciton, is in some sense stronger
than those where the formula ¬(p ∧ ¬p) is valid. In [2] a logic that rejects
both, the explosion principle and the principle of non-contradiction, is called
a genuine paraconsistent logic. In this sense Z, G′3, CG

′
3 are not genuine [12],

but C1 [5] is.
In this work, we deal with SP3B, one of the genuine paraconsistent logics
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defined in [2]; it has three primitive connectives: ¬, ∧, ∨. The disjunction is
defined as the maximum of the two values, as is usual in other logics, however
the conjunction is not always the least of the two values. A non-primitive
implication connective can be defined in many ways so that Modus Ponens
preserves tautologies. One such definition, consistent with the implication in
logics G3, G

′
3, and CG′3, is provided.

Our main interest in this work is to provide a convenient examination of
SP3B that allows us to explore its relationships with other paraconsistent
logics, in particular with logic C1 [5], which has certain maximality property:
it cannot be extended to a paraconsistent logic where the substitution property
is valid [13]. Our contributions are the following:

1. In sections 2 and 3, we prove that C1 is properly contained in SP3B, and
we also provide an axiomatization of SP3B that extends the axiomatic
system that defines C1.

2. In section 4, we explore the relationship of SP3B with the paraconsistent
3-valued logic CG′3 [12]; both logics have two designated values, we prove
that any function expressed in terms of the connectives of any of these
two logics can be expressed in terms of the connectives of the other, i.e.,
the two sets of connectives express the same functions. As a consequence,
a tautology in any of these logics translates into a tautology in the other
logic.

3. In section 5, we also provide a weak form of the substitution property for
SP3B, [2] shows that the regular substitution property does not hold in
SP3B.

Further research has been done in logic CG′3, for example [9] presents a
characterization in terms of Kripke systems of CG′3, and [8] presents an ax-
iomatization of it. The work presented in [6] studies families of many-valued
logics related to Gödel logic G, considers adding a Lukasiewicz type negation
to some of these logics and also studies Kripke semantics for some of these
structures. These results and the relationship presented here between these
two logics open new opportunities in the study of logic SP3B.

1 Background

In this section, we present two of the more common ways of defining a logic,
and provide examples.
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1.1 Multi-valued logics

A way to define a logic is with the use of truth values and interpretations.
Multi-valued systems generalize the idea of using truth tables that are used to
determine the validity of formulas in classical logic. It has been suggested that
multi-valued systems should not count as logics; on the other hand pioneers
such as Lukasiewicz considered such multi-valued systems as alternatives to the
classical framework. Like other authors do, we prefer to give to multi-valued
systems the benefit of the doubt about their status as logics.

The core of a multi-valued system is its domain of values D, where some
of such values are special and identified as designated. Connectives (e.g. ∧, ∨,
→, ¬) are then introduced as operators over D according to the particular def-
inition of the logic. An interpretation is a function I : L → D that maps atoms
to elements in the domain. The application of I is then extended to arbitrary
formulas by mapping first the atoms to values in D, and then evaluating the
resulting expression in terms of the connectives of the logic. A formula is said
to be a tautology if, for every possible interpretation, the formula evaluates to a
designated value. The most simple example of a multi-valued logic is classical
logic where: D = {0, 1}, 1 is the unique designated value, and connectives are
defined through the usual basic truth tables.

Not all multi-valued logics have to have the four connectives mentioned
before, in fact classical logic can be defined in terms of two of those connec-
tives ¬,∧ (primitive connectives), and the other two (non-primitive) can be
defined in terms of ¬,∧. In case of a logic having the implication connective,
it is desirable that it preserves tautologies, in the sense that if x, x → y are
tautologies, then y is also a tautology. This restriction enforces the validity of
Modus Ponens in the logic.

Since we will be working with several logics, we will use subindices next
to the connectives to specify to which logic they correspond, for example ¬G3

corresponds to the connective ¬ of logic G3. In those cases where the given
logic is understood from the context, we drop such subindexes.

1.1.1 The logic SP3B

Now we review an interesting genuine three-valued paraconsistent logic called
SP3B. This logic is defined in [2]. SP3B logic is a 3-valued logic with truth
values in the domain D = {0, 1, 2} where 1 and 2 are the designated values.
The connectives ∧, ∨, and ¬ in SP3B are defined according to the truth tables
given in Table 1.
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∧ 0 1 2

0 0 0 0
1 0 2 1
2 0 1 2

∨ 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

x ¬x
0 2
1 1
2 0

Table 1: Truth tables of connectives ∧, ∨, and ¬ in SP3B.

1.1.2 The logics G′3 and CG′3

Logic G′3 was first presented in [14], it is a 3-valued paraconsistent logic with
one designated value. In [11] the authors present an axiomatization of G′3 by
providing a Hilbert system with a soundness and completeness theorem for it.
We present here its definition as a 3-valued logic by means of the truth tables
of its connectives, with 2 as designated value. Table 2 shows the truth tables
of connectives ¬G′

3
and →G′

3
. We observe that ¬G′

3
varies in one of its values

from ¬G3 , the negation of the three-valued Gödel logic G3. The implication
for these two logics have the same truth tables. Conjunction and disjunction
for G′3 are defined, just as in all other well known logics, as the min and max
functions respectively, namely α ∧ β = min(α, β), α ∨ y = max(α, β).

→G′
3

0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

x ¬G′
3
x

0 2
1 2
2 0

x ¬G3x

0 2
1 0
2 0

Table 2: Truth tables of connectives →, ¬ in G′3 and ¬ in G3.

Logic CG′3 is defined by the same truth tables as G′3 but 1 and 2 are
designated values.

1.2 Hilbert style proof systems

In Hilbert style proof systems, also known as axiomatic systems, a logic is
specified by giving a set of axioms (which is usually assumed to be closed
under substitution). This set of axioms specifies, so to speak, the ‘kernel’ of
the logic. The actual logic is obtained when this ‘kernel’ is closed with respect
to some given inference rules which include Modus Ponens. We will use this
approach of Hilbert systems, and all logics in this paper will have only Modus
Ponens as inference rule. Given a theory T , we use T `X α to denote the fact
that the formula α can be derived from the axioms of the logic X and the
formulas contained in T by a sequence of applications of Modus Ponens1. For

1We drop the subscript X in `X when the given logic is understood from the context.
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any pair of theories T and U , we use T `X U to state the fact that T `X α for
every formula α ∈ U .

As examples of a Hilbert style system we present two logics.
Cω [4] is defined by the following set of axioms:

Pos1 α→ (β→ α)

Pos2 (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

Pos3 (α ∧ β)→ α

Pos4 (α ∧ β)→ β

Pos5 α→ (β → (α ∧ β))

Pos6 α→ (α ∨ β)

Pos7 β→ (α ∨ β)

Pos8 (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ))

Cω1 α ∨ ¬α

Cω2 ¬¬α→ α

Note that the first eight axioms somewhat constrain the meaning of the→,
∧ and ∨ connectives to match our usual intuition. It is a well known result
that in any logic satisfying Pos1 and Pos2, and with Modus Ponens as its
unique inference rule, the Deduction Theorem holds [10].

The set consisting of the first eight axioms of the list above defines Positive
Logic.

Logic C1 is defined by adding to the axioms set of Cω the following two
axioms to which we will refer as ¬1 and ¬2 respectively:

(¬1): β◦ → ((α→ β)→ ((α→ ¬β)→ ¬α)),
(¬2): α◦∧β◦ → (α∧β)◦∧ (α∨β)◦∧ (α→ β)◦, where β◦ = ¬(β ∧¬β).

The first of these two axioms tells us that if β is well-behaved then reduction
at absurdum is recovered. Modus Ponens is the only inference rule of C1.

2 An axiomatic system for SP3B

In this section, we start by defining a non-primitive implication connective
for logic SP3B which will be consistent with the implication of logics G′3 and
CG′3. Then we will define a new logic in terms of a list of axioms and Modus
Ponens as its unique inference rule in order to prove that the theorems of
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this new logic are precisely the tautologies of SP3B providing so a soundness
and completeness theorem for SP3B. This new axiomatic system is called
AXSP3B.

Definition 2.1 For formulas α, β ∈ SP3B we define the implication connec-
tive in SP3B as follows

α→SP3B β := (¬(α ∧ α) ∨ β) ∨ ((α ∧ ¬α) ∧ (β ∧ ¬β))

Tables 10 and 11 in Appendix B show that the true values of this formula
coincide with those of the implications in Gödel logic G3 and in logic G′3.
From these tables it follows that if α→ β and α are tautologies then β is also
a tautology, since if β could take the only non-designated value, which is zero,
then α→ β would be a tautology only if α takes the value zero, in which case
α would not be a tautology.

Next, we present a set of axioms that defines our new logic AXSP3B,
there is a total of 21. Following the idea presented in [10], we define a list
of necessary formulas as axioms from which the tautologies of SP3B can be
deduced when using Modus Ponens as inference rule for this axiomatic system.
We do not prove the independence of the formulas in the system, but later we
use it to provide another axiomatic system that contains logic C1 and is also
complete for SP3B. The proof of a soundness and completeness theorem for
SP3B and AXSP3B appears in Appendix A.

Pos1 α→ (β→ α)

Pos2 (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

Pos3 (α ∧ β)→ α

Pos8 (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ))

PB1 ¬(¬α ∧ ¬α)→ α

PB2 (¬(α ∧ α)) ∨ (α ∧ ¬α) ∨ (¬(¬α ∧ ¬α))

PB3 α→ α

PB4 (β ∧ ¬β)→ (¬β ∧ ¬¬β)

PB5 ¬(β ∧ β)→ ¬(¬¬β ∧ ¬¬β)

PB6 ¬(β ∧ β) ∧ ¬(α ∧ α)→ ¬((β ∨ α) ∧ (β ∨ α))

PB7 (β ∧ ¬β) ∧ ¬(α ∧ α)→ (β ∨ α) ∧ ¬(β ∨ α)
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PB8 ¬(β ∧ β) ∧ (α ∧ ¬α)→ (β ∨ α) ∧ ¬(β ∨ α)

PB9 (β ∧ ¬β) ∧ (α ∧ ¬α)→ (β ∨ α) ∧ ¬(β ∨ α)

PB10 ¬(¬β ∧ ¬β) ∧ ¬(α ∧ α)→ ¬(¬(β ∨ α) ∧ ¬(β ∨ α))

PB11 ¬(¬β ∧ ¬β) ∧ (α ∧ ¬α)→ ¬(¬(β ∨ α) ∧ ¬(β ∨ α))

PB12 ¬(¬β ∧ ¬β) ∧ ¬(¬α ∧ ¬α)→ ¬(¬(β ∨ α) ∧ ¬(β ∨ α))

PB13 ¬(β ∧ β) ∧ ¬(α ∧ α)→ ¬((β ∧ α) ∧ (β ∧ α))

PB14 ¬(β ∧ β) ∧ (α ∧ ¬α)→ ¬((β ∧ α) ∧ (β ∧ α))

PB15 (β ∧ ¬β) ∧ (α ∧ ¬α)→ ¬(¬(β ∧ α) ∧ ¬(β ∧ α))

PB16 (β ∧ ¬β) ∧ (¬(¬α ∧ ¬α))→ (β ∧ α) ∧ ¬(β ∧ α)

PB17 ¬(¬β ∧ ¬β) ∧ ¬(¬α ∧ ¬α)→ ¬(¬(β ∧ α) ∧ ¬(β ∧ α))

As it is well known Pos1, Pos2 and Modus Ponens as a unique inference
rule entail the validity of the deduction theorem in AXSP3B.

Our main result regarding logic AXSP3B is the following.

Theorem 2.2 (soundness and completeness). The set of theorems of AXSP3B
is the same as the set of tautologies of SP3B.

Proof. See Appendix A. �

3 SP3B as an extension of C1

The family of logics Cn has been proposed as the base of inconsistent but non-
trivial theories [5]. In particular, C1 has been widely studied [13, 5] and one
of its main features, as mentioned earlier, is that any paraconsistent extension
of it does not accept the replacement property. C1 is properly contained in
SP3B since all the axioms that define C1 are tautologies in SP3B, however in
SP3B the formula ¬(α∨ β)↔ ¬α∧¬β is a tautology, but it is not a theorem
in C1.

We present now an axiomatic system that extends C1 and for which all
tautologies of SP3B are theorems, besides all formulas in this system are
tautologies of SP3B; therefore what we obtain is an axiomatization of SP3B
that contains all axioms that define C1.

Our family of axioms is denoted by AX3B and consists of the following:
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1. All axioms of C1.

2. α→ ¬¬α.

3. (α ∧ α)◦ where β◦ = ¬(β ∧ ¬β).

4. (De Morgan Law): ¬(α ∨ β)→ ¬α ∧ ¬β and ¬α ∧ ¬β → ¬(α ∨ β).

5. (Y): ¬α◦ ∧ ¬β◦ → (α ∧ β)◦.

6. (YY): ¬β◦ ∧ (α ∧ β)◦ → ¬α.

Next, we will prove that this axiomatic system is in fact an axiomatization
for logic SP3B. In order to do that, we first prove that each of the formulas
that define the system AXSP3B is proved in AX3B.

We start by listing some properties valid in logic C1 that will be used in
what follows, for details see [2, 13, 5].

Lemma 3.1 In logic C1 we have:

1. β◦, α→ β ` ¬β → ¬α

2. β◦, α→ ¬β ` β → ¬α

3. β◦,¬α→ β ` ¬β → α

4. β◦,¬α→ ¬β ` β → α

5. ` (α◦)◦

Lemma 3.2 Reductio ad absurdum in logic C1:

1. (Γ ∪ {α} ` β◦, Γ ∪ {α} ` β, Γ ∪ {α} ` ¬β)→ Γ ` ¬α

2. (Γ ∪ {¬α} ` β◦, Γ ∪ {¬α} ` β, Γ ∪ {¬α} ` ¬β)→ Γ ` α

Lemma 3.3 The following formula is valid in logic C1:

¬(α ∧ β)→ ¬α ∨ ¬β

Now we provide one by one the proofs of the axioms in the list that define
the system AXSP3B from our new system AX3B:

PB1: ¬(¬α ∧ ¬α)→ α
Proof. ¬α→ (¬α ∧ ¬α) (positive logic),
(¬α ∧ ¬α)◦ (axiom),
¬(¬α ∧ ¬α)→ ¬¬α (Lemma 3.1, item 1).
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Now, applying double negation and transitivity we obtain:
¬(¬α ∧ ¬α)→ α. �

PB2: ¬(α ∧ α) ∨ (α ∧ ¬α) ∨ ¬(¬α ∧ ¬α)
Proof. Let us call γ the formula we want to prove and assume
¬γ → ¬¬(α ∧ α) ∧ ¬(α ∧ ¬α) ∧ ¬¬(¬α ∧ ¬α) (De Morgan Law).
Then by using basic logic, double negation and transitivity:
¬γ → α,
¬γ → (α)◦,
¬γ → ¬α.
Now by Lemma 3.2, we obtain ` ¬¬γ and the conclusion follows from the
double negation axiom. �

PB3: α→ α
Proof. It follows from Pos1 and Pos2. �

PB4: (β ∧ ¬β)→ (¬β ∧ ¬¬β)
Proof. It follows from the axiom α→ ¬¬α. �

PB5: ¬(β ∧ β)→ ¬(¬¬β ∧ ¬¬β)
Proof. We have from double negation and basic properties (¬¬β ∧¬¬β))→
(β ∧ β). Also we have (β ∧ β)◦. Hence, the result follows by Lemma 3.1, item
1. �

PB6: ¬(β ∧ β) ∧ ¬(α ∧ α)→ ¬((β ∨ α) ∧ (β ∨ α))
Proof. From basic logic, we have (β ∨ α)→ (β ∧ β) ∨ (α ∧ α) and therefore
((β ∨ α) ∧ (β ∨ α)) → (β ∧ β) ∨ (α ∧ α). Since we have (β ∧ β)◦ and (α ∧ α)◦

we have (β ∧ β)◦ ∨ (α ∧ α) according to axiom ¬2 of C1. Then, the conclusion
follows by applying Lemma 3.1, item 1. �

PB7: (β ∧ ¬β) ∧ ¬(α ∧ α)→ ((β ∨ α) ∧ ¬(β ∨ α))
Proof. Since we have β → (β ∨ α) from positive logic, it is enough to prove
(β ∧ ¬β) ∧ ¬(α ∧ α) → (¬β ∧ ¬α) and then the result follows from the De
Morgan Law we have. We also have (α ∧ α)◦ and α → (α ∧ α) then, by
Lemma 3.1, item 1 we obtain ¬(α ∧ α)→ ¬α). �

PB8: This formula is equivalent to PB7.

PB9: (β ∧ ¬β) ∧ (α ∧ ¬α)→ (β ∨ α) ∧ ¬(β ∨ α)
Proof. It follows from the next two facts:
(β ∧ ¬β)→ (β ∨ α) and (¬β ∧ ¬α)→ ¬(β ∨ α). �
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PB10: ¬(¬β ∧ ¬β) ∧ ¬(α ∧ α)→ ¬(¬(β ∨ α) ∧ (¬(β ∨ α))
Proof. We will prove ¬(¬β ∧ ¬β)→ ¬(¬(β ∨ α) ∧ (¬(β ∨ α)).
By De Morgan Law (¬(β∨α)∧(¬(β∨α)→ ¬β∧¬α, but ¬β∧¬α→ ¬β∧¬β.
Since we have (¬β∧¬β)◦ we can apply Lemma 3.1, item 1 to obtain the desired
relation. �

PB11: ¬(¬β ∧ ¬β) ∧ (α ∧ ¬α)→ ¬(¬(β ∨ α) ∧ (¬(β ∨ α))
Proof. The proof is the same as for PB10. �

PB12: ¬(¬β ∧ ¬β) ∧ ¬(¬α ∧ ¬α)→ ¬(¬(β ∨ α) ∧ (¬(β ∨ α))
Proof. The proof is the same as for PB10. �

PB13: ¬(β ∧ β) ∧ ¬(α ∧ α)→ ¬((β ∧ α) ∧ (β ∧ α))
Proof. According to PB6 it is enough to prove:
¬((β ∨ α) ∧ (β ∨ α))→ ¬((β ∧ α) ∧ (β ∧ α)).
Since ((β ∧α)∧ (β ∧α))→ ((β ∨α)∧ (β ∨α)) and we have ((β ∨α)∧ (β ∨α))◦

the result follows from Lemma 3.1, item 1. �

PB14: ¬(β ∧ β) ∧ (α ∧ ¬α)→ ¬((β ∧ α) ∧ (β ∧ α))
Proof. It is enough to prove the formula ¬(β ∧ β) → ¬((β ∧ α) ∧ (β ∧ α)).
From positive logic, we have ((β ∧ α) ∧ (β ∧ α)) → (β ∧ β). Since we have
(β ∧ β)◦, we only need to apply part 1 of Lemma 3.1. �

PB15: (β ∧ ¬β) ∧ (α ∧ ¬α)→ ¬(¬(β ∧ α) ∧ ¬(β ∧ α))
Proof. First we prove that the formula η = ¬(α∧β)∧¬(¬(α∧¬α)∨¬(β∧¬β))
is a bottom particle. In order to do this, we show that the three formulas
(α ∧ β), ¬(α ∧ β), (α ∧ β)◦ follow from η. From our formula and using De
Morgan Law, we obtain ¬¬(α ∧ ¬α) ∧ ¬¬(β ∧ ¬β) and by using one of our
double negation axioms we obtain (α∧¬α)∧(β∧¬β), and from here we obtain
(α ∧ β) which is the first formula. The second formula is a conjunct in η. We
prove now the third formula; from the second conjunct of η and by using De
Morgan Law: ¬(¬(α∧¬α))∧¬(¬(β∧¬β)), and the result follows from axiom
(Y).

Next, we prove the formula γ = ¬(β ∧ α) → (β)◦ ∨ (α)◦. Equivalently,
according to the deduction theorem we need to prove ¬(β ∧ α) ` (β)◦ ∨ (α)◦,
but since η = ¬(α∧β)∧¬(¬(α∧¬α)∨¬(β∧¬β)) is a bottom particle, it proves
any formula, and by applying Lemma 3.2 part 2 we obtain ¬(β∧α) ` (β)◦∨(α)◦.

Next we complete the proof of PB15: from formula γ and positive logic
(¬(β ∧α)∧¬(β ∧α))→ (β)◦ ∨ (α)◦. Now, by Lemma 3.1 part 5 and axiom ¬2
we know that ((β)◦∨(α)◦)◦ is a theorem in logic C1 so we can apply Lemma 3.1
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part 1 to obtain ¬((β)◦∨(α)◦)→ ¬(¬(β∧α)∧¬(β∧α)) therefore by one of De
Morgan Laws this translates into ¬(β)◦ ∧ ¬(α)◦ → ¬(¬(β ∧ α) ∧ ¬(β ∧ α)).
Now, by using the equivalence α↔ ¬¬α we conclude ((β ∧¬β)∧ (α∧¬α))→
¬(¬(β ∧ α) ∧ ¬(β ∧ α)) as desired. �

PB16: ((β ∧ ¬β) ∧ (¬(¬α ∧ ¬α))→ (β ∧ α) ∧ ¬(β ∧ α)
Proof. From axiom (YY), the deduction theorem and positive logic we have
¬(β)◦ ` (α ∧ β)◦ → (¬α ∧ ¬α). Now, by using Lemma 3.1 part 1 along with
axiom (α ∧ α)◦ we obtain ¬(β)◦ ` ¬(¬α ∧ ¬α) → ¬((α ∧ β)◦) then the result
follows by removing double negations. �

PB17: ¬(¬β ∧ ¬β) ∧ ¬(¬α ∧ ¬α)→ ¬(¬(β ∧ α) ∧ ¬(β ∧ α))
Proof. From Lemma 3.3 ¬(β ∧ α) → (¬β ∨ ¬α) and properties of positive
logic we obtain (¬(β ∧ α) ∧ ¬(β ∧ α)) → ((¬β ∧ ¬β) ∨ (¬α ∧ ¬α)). Now by
axiom (α ∧ α)◦ and results of logic C1, the formula ((¬β ∧ ¬β) ∨ (¬α ∧ ¬α))◦

is a theorem, so we can apply Lemma 3.1 part 1 to the previous formula to
get ¬((¬β ∧ ¬β) ∨ (¬α ∧ ¬α))→ ¬((¬(β ∧ α) ∧ ¬(β ∧ α)). Then by using one
of De Morgan Laws on the left hand side of last formula we obtain our result
¬(¬β ∧ ¬β) ∧ ¬(¬α ∧ ¬α)→ ¬(¬(β ∧ α) ∧ ¬(β ∧ α)). �

We are now in position to prove that SP3B has an axiomatic version that
extends logic C1

Theorem 3.4 (Soundness and completeness) Each theorem in AX3B is a
tautology in SP3B and each tautology in SP3B is a theorem in AX3B.

Proof. The result follows from the fact that the system AX3B proves all
axioms that define system AXSP3B and therefore all tautologies in SP3B are
theorems in AX3B according to Theorem 2.2. Conversely, all axioms in the
system AX3B are tautologies, as can be proved straightforward. �

4 Functional equivalences between logics CG′3 and
SP3B

We proceed to prove that the sets of connectives of logics CG′3 and SP3B
generate the same functions. In order to do this, we express the connectives of
CG′3 in terms of those of SP3B and vice-versa.
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4.1 SP3B expresses CG′3

Table 3 shows how each connective in CG′3 can be expressed in terms of the
connectives of SP3B. The truth-tables that confirm these facts are presented
in Appendix B, section 1.

Connectives in CG′3 Formula in SP3B

¬x (¬x ∧ x) ∨ (¬x)
x ∧ y (x ∧ y) ∧ (x ∨ y)
x ∨ y x ∨ y
x→ y (¬(x ∧ x) ∨ y) ∨ ((x ∧ ¬x) ∧ (y ∧ ¬y))

Table 3: Table of transformations

We state as a theorem the following result that indicates that any function
expressed in terms of the connectives of CG′3 can be expressed in terms of the
connectives of SP3B.

Theorem 4.1 Any function expressed in terms of the connectives of CG′3 can
be expressed in terms of the connectives of SP3B.

Proof. Follows from tables presented in Appendix B, section 1. �

4.2 CG′3 expresses SP3B

Table 4 shows how each connective in SP3B can be expressed in terms of the
connectives of CG′3. The truth-tables that confirm these facts are presented in
Appendix B, section 2.

Connectives in SP3B Formula in CG′3
¬x (x ∧ ¬x) ∨ (x→ (¬x ∧ ¬¬x))
x ∧ y [∼∼ (x ∧ ¬x)∧ ∼∼ (y ∧ ¬y)] ∨ (x ∧ y)

where ∼ x = x→ (¬x ∧ ¬¬x)
x ∨ y x ∨ y
x→ y x→ y

Table 4: Table of transformations

The following result follows from these facts.

Theorem 4.2 Any function expressed in terms of the connectives of SP3B
can be expressed in terms of the connectives of CG′3.

Proof. Follows from tables presented in Appendix B, section 2. �
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4.3 Transformations of tautologies

According to the facts presented, we can state the following result:

Corollary 4.3 Under the transformations provided by Table 3 and Table 4, a
tautology in CG′3 translates into a tautology in SP3B and a tautology in SP3B
translates into a tautology in CG′3.

The previous results show that each of these logics can be expressed in
terms of the other; however it is natural to ask whether they are comparable.
Our next result shows that in fact none of these logics is stronger than the
other; no every tautology in SP3B is a tautology in CG′3, and vice-versa no
every tautology in CG′3 is a tautology in SP3B.

Theorem 4.4 Logics SP3B and CG′3 are not comparable.

Proof. It is not hard to see that the formula ¬(x ∧ ¬x) is a tautology in
CG′3. As we already know the principle of non-contradiction does not hold in
SP3B. Therefore SP3B is not stronger than CG′3. On the other hand the
formula ¬(y ∧ ¬y)→ ((x→ y)→ ((x→ ¬y)→ ¬x)) is a tautology in SP3B,
but it is not a tautology in CG′3 as it can be seen with the assignation x = 2,
y = 1. Therefore CG′3 is not stronger than SP3B. �

5 Substitution property

The replacement theorem is an important and desirable feature in any logic,
particularly if one wants to study logics that remain as close as possible to
classical logic. Logic C1, an extension of da Costa logic Cω [4] has the property
that it cannot be extended to a paraconsistent logic where the replacement
property remains valid [2, 13]. It is not hard to see that SP3B is a parconsistent
extension of C1 [2], hence it does not possess the substitution property, however
a weaker form of that property is valid as we show next. In [2, 13] different
ways of extending C1 to paraconsistent logics are considered.

Definition 5.1 For formulas x and y in SP3B, we define the following rela-
tion: x ∼ y iff |= x↔ y, i.e., x↔ y is a tautology in SP3B.

Table 5 shows that x↔ y is a tautology only when both formulas have the
same truth values, or one of them takes the value 1 and the other one takes
the value 2.
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x y x↔ y

0 0 2
0 1 0
0 2 0
1 0 0
1 1 2
1 2 1
2 0 0
2 1 1
2 2 2

Table 5: Truth table for the connective x↔ y

Theorem 5.2 The relation ∼ is an equivalence relation.

Proof. The symmetry and the reflexivity follow from the rows where the two
variables have the same truth values, and from the symmetry of the formula
x↔ y. The transitivity follows from the fact that the family {{0}, {1, 2}} is a
partition of the set of truth values. �

Let us define the connective ⇔ as follows: x⇔ y means (x↔ y)∧ (¬x↔ ¬y).

Lemma 5.3 |= x ⇔ y if and only if formulas x and y have the same truth
values for any interpretation.

Proof. Table 6 proves the proposition. �

x y x↔ y ¬x ¬y ¬x↔ ¬y (x↔ y) ∧ (¬x↔ ¬y)

0 0 2 2 2 2 2
0 1 0 2 1 1 0
0 2 0 2 0 0 0
1 0 0 1 2 1 0
1 1 2 1 1 2 2
1 2 1 1 0 0 0
2 0 0 0 2 0 0
2 1 1 0 1 0 0
2 2 2 0 0 2 2

Table 6: Truth table for the connective x⇔ y

This connective allows us to have a substitution theorem for logic SP3B
when using the symbol ↔ as defined before. We need the following definition.
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Definition 5.4 ϕ[ψρ ] =

{
ϕ if ϕ is atomic and different from ρ
ψ if ϕ = ρ

In the case ϕ is not atomic then ϕ = ϕ1�ϕ2 (where � is any of the binary
connectives) or ϕ = ¬ϕ1.

For the first case we define ϕ1�ϕ2[
ψ
ρ ] = ϕ1[

ψ
ρ ] � ϕ2[

ψ
ρ ].

For the second case we define ¬(ϕ1)[
ψ
ρ ] = ¬ϕ1[

ψ
ρ ].

Finalli, we present a weak version of the substitution theorem for SP3B.

Theorem 5.5 |= ψ1 ⇔ ψ2 then |= ϕ[ψ1

ρ ]⇔ ϕ[ψ2

ρ ].

Proof. The proof is done by induction on the length of ϕ.

1. If ϕ = ρ then for each i, ϕ[ψi

ρ ] = ϕ and the result follows from the
induction hypothesis.

2. If ϕ is an atom different from ρ then there is no substitution to be done
and the result follows.

3. If ϕ = ϕ1�ϕ2 then by induction hypothesis |= ϕ1[
ψ1

ρ ] ⇔ ϕ1[
ψ2

ρ ] and

|= ϕ2[
ψ1

ρ ] ⇔ ϕ2[
ψ2

ρ ]. By Lemma 5.3, we know that any interpretation

gives the same truth values to ϕi[
ψ1

ρ ] and ϕi[
ψ2

ρ ] and we also know that

the truth values of (ϕ1�ϕ2)[
ψ2

ρ ] depend on those truth values solely, hence
the result follows.

4. If ϕ = ¬ϕ1, then under any interpretation the truth values of ϕ1[
ψ1

ρ ] are

the same as those for ϕ1[
ψ2

ρ ] by hypothesis, therefore as in the previous

case, the truth values of ¬ϕ1[
ψ1

ρ ] are the same as those for ¬ϕ1[
ψ2

ρ ]. Then

it follows that |= ¬ϕ1[
ψ1

ρ ]⇔ ¬ϕ1[
ψ2

ρ ].

�

6 Further remarks

In Section 2, we defined an implication connective for SP3B in terms of its
original connectives. There are many ways of defining an implication for SP3B
in such a way that it preserves tautologies, i.e., if α→ β and α are tautologies
then β is also tautology. One of these definitions is provided by the formula
a 7→ b : ¬(a∧a)∨b, which reproduces the implication of three-valued logic PAC,
a maximal paraconsistent logic studied in [1]. Conjunction and disjunction in
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PAC are defined by the min and max functions respectively. The negation in
PAC is the same as in SP3B and the implication of PAC is shown in Table 7.
PAC has as designated value 1 and 2. Proofs of Theorem 2.2 and 3.4 do not
depend on the particular definition of the implication and the developments of
their proofs are still the same. Therefore we have the following corollary.

Corollary 6.1 If we define 7→ as the implication for SP3B then Theorem 2.2
and 3.4 are still valid.

7→ 0 1 2

0 2 2 2
1 0 1 2
2 0 1 2

Table 7: Truth tables of connectives → in PAC.

7 Conclusions and future work

We have proved that the sets of connectives of SP3B and in CG′3 are equivalent;
each function expressed by one set of connectives can be expressed by the other.
In particular this means that logic CG′3 can be expressed in terms of logic
SP3B and vice-versa. We provided a weak form of the substitution theorem
for SP3B and extended the axiomatic system of C1 to an axiomatization of
SP3B, which in particular shows that SP3B is stronger than C1. Logic SP3B
has been introduced recently and there are many questions one can ask about
it, like for example: to which extent can we import properties of CG′3 to
SP3B? In particular, can we characterize logic SP3B in terms of a Kripke
system, given that such a representation has been provided for logic CG′3? The
research aimed at answering these and other questions is the subject of future
work.
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[11] Mauricio Osorio and José Luis Carballido. Brief study of G’3 logic. Journal
of Applied Non-Classical Logic, 18(4):475–499, 2008.
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A Soundness and completeness proof

In this section, we present the equivalence between the tautologies of SP3B
and the theorems of AXSP3B.

A.1 Soundness

We provide the result that assures that the axiomatic system presented in
Section 2 is in fact an axiomatic version of SP3B. The first part consists in
proving that every tautology in SP3B is a theorem in AXSP3B. We present
it next:

Theorem A.1 (Soundness) Any formula in AXSP3B that is a theorem is a
tautology in SP3B .

Proof. The proof is done by induction on the length of the proof of the
theorem. First, by means of truth-tables one can check that all axioms of
AXSP3B are tautologies.

Let A be a theorem and let α1, α2, . . . , αn = A be its proof. We assume A is
not an axiom, otherwise we are done, then there are two previous steps αk, αm
such that αm = αk → A, by induction hypothesis αk and αm are tautologies,
then the result follows from the the fact that the implication →SP3B preserves
tautologies as noted after Definition 2.1. �

A.2 Completeness

The idea of the proof has its roots in Kalmars’s proof of completeness for
classical logic [10]. Such proof was generalized in the setting of 3-valued logics
for G′3 [14].

Now we proceed to prove that AXSP3B is an axiomatization of SP3B.
We need some definitions and a lemma.

Definition A.2 Given a formula ϕ ∈ SP3B and a 3-valuation ν on SP3B,
we define a new formula ϕν according to the following:

ϕν = ¬(¬ϕ ∧ ¬ϕ) if ν(ϕ) = 2

ϕν = ϕ ∧ ¬ϕ if ν(ϕ) = 1

ϕν = ¬(ϕ ∧ ϕ) if ν(ϕ) = 0
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Definition A.3 For a set of atoms ∆ and a 3-valuation ν, we define ∆ν :=
{Pν |P ∈ ∆}.

In order to prove a completeness theorem for SP3B , we need Lemma A.4.

Lemma A.4 Given a formula A, whose set of atoms is ∆, and a 3-valuation
ν, the following relation holds: ∆ν ` Aν .

Proof. We use induction on the number of connectives. We observe that the
result is true if A is an atom.

1. Let us suppose that A has the form ¬B.

(a) By hypothesis ∆ν ` Bν .

If ν(B) = 2 then ∆ν ` ¬(¬B ∧ ¬B). Since ν(A) = ν(¬B) = 0, we
need to prove that ∆ν ` ¬(A ∧ A), this is ∆ν ` ¬(¬B ∧ ¬B). This
follows from Axiom PB3.

(b) If ν(B) = 1, ∆ν ` B ∧ ¬B. Since ν(A) = ν(¬B) = 1, we need to
prove that ∆ν ` ¬B ∧ ¬¬B. This follows from Axiom PB4.

(c) If ν(B) = 0, ∆ν ` ¬(B ∧ B). Since ν(A) = ν(¬B) = 2, we need to
prove that ∆ν ` ¬(¬A ∧ ¬A), i.e., we need to prove that
∆ν ` ¬(¬¬B ∧ ¬¬B). This follows from Axiom PB5.

2. Let us suppose that A is B ∨ C.

(a) If ν(A) = 0 then ν(B) = ν(C) = 0. ∆ν ` Bν , Cν ,
∆ν ` ¬(B ∧B),¬(C ∧ C), we want to prove that ∆ν ` Aν , i.e.,
∆ν ` ¬((B ∨ C) ∧ (B ∨ C)). This follows from Axiom PB6.

(b) Let ν(A) = 1, ν(B) = 1, ν(C) = 0.

If ∆ν ` Bν , ∆ν ` Cν then ∆ν ` B ∧ ¬B, ∆ν ` ¬(C ∧ C).

We want to prove that ∆ν ` (B ∨C)∧¬(B ∨C). This follows from
Axiom PB7.

(c) Let ν(A) = 1, ν(B) = 0, ν(C) = 1.

If ∆ν ` Bν , Cν then ∆ν ` ¬(B ∧B), ∆ν ` (C ∧ ¬C).

We want to prove that ∆ν ` Aν , i.e., we want to prove that
∆ν ` (B ∨ C) ∧ ¬(B ∨ C). This follows from Axiom PB8.

(d) Let ν(A) = ν(B) = ν(C) = 1.

∆ν ` Bν , Cν , ∆ν ` B ∧ ¬B, ∆ν ` (C ∧ ¬C).

We want to prove that ∆ν ` Aν , i.e., ∆ν ` (B ∨ C) ∧ ¬(B ∨ C).
This follows from Axiom PB9.
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(e) Let ν(A) = ν(B) = 2, ν(C) = 0.

∆ν ` ¬(¬B ∧ ¬B), ∆ν ` ¬(C ∧ C).

We want to prove that ∆ν ` Aν , i.e., ∆ν ` ¬(¬(B∨C)∧¬(B∨C)).
This follows from Axiom PB10.

(f) Let ν(A) = ν(B) = 2, ν(C) = 1.

∆ν ` ¬(¬B ∧ ¬B), ∆ν ` C ∧ ¬C.

We want to prove that ∆ν ` Aν , i.e., ∆ν ` ¬(¬(B∨C)∧¬(B∨C)).
This follows from Axiom PB11.

(g) Let ν(A) = ν(B) = ν(C).

∆ν ` Bν , Cν , i.e., ∆ν ` ¬(¬B ∧ ¬B), ∆ν ` ¬(¬C ∧ ¬C).

We want to prove that ∆ν ` ¬(¬(B ∨C) ∧¬(B ∨C)). This follows
from Axiom PB12.

3. Let us suppose that A is B ∧ C.

(a) Let ν(A) = ν(B) = ν(C) = 0. By hypothesis ∆ν ` ¬(B ∧B),
∆ν ` ¬(C ∧ C), we want to prove that ∆ν ` ¬(A ∧A), i.e.,
∆ν ` ¬((B ∧ C) ∧ (B ∧ C)). This follows from Axiom PB13.

(b) Let ν(A) = ν(B) = 0, ν(C) = 1.

Let ∆ν ` ¬(B ∧B), ∆ν ` C ∧ ¬C.

We want to prove that ∆ν ` ¬(A ∧A) , i.e.,
∆ν ` ¬((B ∧ C) ∧ (B ∧ C)). This follows from Axiom PB14.

(c) Let ν(A) = 2, ν(B) = ν(C) = 1.

Let ∆ν ` B ∧ ¬B, ∆ν ` C ∧ ¬C.

We want to prove that ∆ν ` ¬(¬A ∧ ¬A) , i.e.,
∆ν ` ¬(¬(A ∧B) ∧ ¬(A ∧B)). This follows from Axiom PB15.

(d) Let ν(A) = 1, ν(B) = 1, ν(C) = 2.

Let ∆ν ` Bν , Cν , ∆ν ` B ∧ ¬B and ∆ν ` ¬(¬C ∧ ¬C).

We want to prove that ∆ν ` (A ∧ ¬A) , i.e.,
∆ν ` (B ∧ C) ∧ ¬(B ∧ C). This follows from Axiom PB16.

(e) Let ν(A) = ν(B) = ν(C).

Let ∆ν ` Bν , Cν , i.e., ∆ν ` ¬(¬B ∧ ¬B),¬(¬C ∧ ¬C).

We want to prove that ∆ν ` ¬(¬A ∧ ¬A) , i.e.,
∆ν ` ¬(¬(B ∧ C) ∧ ¬(B ∧ C)). This follows from Axiom PB17.

�

Before we present the completeness theorem we establish the following easy
result which follows from Pos8.
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Lemma A.5 If φ1, φ2, φ3 are formulas and φ1 ` A, φ2 ` A, φ3 ` A then
φ1 ∨ φ2 ∨ φ3 ` A.

Finally, we present the completeness part of our main result.

Theorem A.6 (Completeness) If A is a tautology in SP3B then A is a the-
orem in the axiomatic system AXSP3B.

Proof. Let us assume that A is a tautology in SP3B whose set of atomic for-
mulas is ∆. By Lemma A.4, ∆ν ` Aν for any 3-valuation ν. Therefore we have
∆ν ` A∧¬A or ∆ν ` ¬(¬A∧¬A) according to ν(A) = 1 or ν(A) = 2. Now by
Pos3 (A∧¬A)→ A and by PB1 ¬(¬A∧¬A)→ A we conclude that ∆ν ` A.
Now let a be any atomic formula in ∆ and let us define Γ = ∆ \ {a}. The pre-
vious lines tell us that Γν ,¬(a∧a) ` A , Γν , a∧¬a ` A and Γν ,¬(¬a∧¬a) ` A.
Then according to Lemma A.5 and Axiom PB2, we obtain Γν ` A. By apply-
ing the deduction theorem |∆| steps we conclude that ` A. �

Corollary A.7 The axioms that define positive logic and Cω logic are theorems
in AXSP3B.

Proof. It is not difficult to see that Pos1, Pos2,. . .,Pos8, Cω1, Cω2 are
tautologies in SP3B, then the result follows from Theorem A.6. �

A.3 Constructing a proof for a given tautology

Lemma A.4 and Theorem A.6 provide a method to construct a proof for a
given tautology in terms of the axioms of AXSP3B, as we show next with an
example.

Example A.8 The formula p ∨ (¬(p ∧ ¬p)) is a tautology in SP3B which is
not hard to check. This formula is a disjunction, we put η = ¬(p ∧ ¬p). We
prove that this formula is a theorem by using Lemma A.4. Let ν be a valuation
such that ν(p) = 0 , then ν(η) = 2. According to case 2 (e) of Lemma A.4
¬(p ∧ p) ` ¬(p ∧ p) and ¬(p ∧ p) ` ¬(¬η ∧ ¬η). According to Axiom PB10
¬(¬η ∧ ¬η)) ∧ ¬(p ∧ p) → ¬(¬(η ∨ p) ∧ ¬(η ∨ p)). According to Axiom PB1
¬(¬(η ∨ p) ∧ ¬(η ∨ p))→ (η ∨ p). Thus we obtain ¬(p ∧ p) ` p ∨ (¬(p ∧ ¬p).

Now let ν be a valuation such that ν(p) = 1, then ν(η) = 0 and
ν(p ∨ η) = 1. According to Lemma A.4 case 2 (c) (p ∧ ¬p) ` (p ∧ ¬p) and
(p ∧ ¬p) ` ¬(η ∧ η). By Axiom PB8 we have
(¬(η ∧ η) ∧ (p ∧ ¬p)) → (η ∨ p) ∧ ¬((η ∨ p)). And by Axiom Pos3 we have
(η ∨ p) ∧ ¬((η ∨ p))→ (η ∨ p). So we obtain p ∧ ¬p ` ¬(p ∧ ¬p) ∨ p.
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Now, let ν be a valuation such that ν(p) = 2, then ν(η) = 2 and ν(p∨η) = 2.
According to Lemma A.4 case 2(g), ¬(¬p∧¬p) ` ¬(¬p∧¬p) and ¬(¬p∧¬p) `
¬(¬η ∧ ¬η). According to Axiom PB12,
¬(¬p∧¬p)∧¬(¬η ∧¬η)→ ¬(¬(p∨ η)∧¬(p∨ η)). Now applying Axiom PB1
¬(¬(p∨ η)∧¬(p∨ η))→ (p∨ η). Thus we obtain ¬(¬p∧¬p) ` p∨ (¬(p∨¬p)).
According to Lemma A.5, taking the last row from each of the three cases we
conclude (¬(p ∧ p)) ∨ (p ∧ ¬p) ∨ (¬(¬p ∧ ¬p)) ` p ∨ (¬(p ∧ ¬p). Since the left
hand side of this relation is Axiom PB2, it follows that p ∨ (¬(p ∧ ¬p) is a
theorem in AXSP3B.

B Connectives of CG′3 and SP3B

Logics SP3B and CG′3 have 1 and 2 as designated values, although this fact
is not relevant in this section, our goal in this paper is to start looking into
similarities between these two logics.

B.1 Expressing the connectives of CG′3 in terms of the connec-
tives of SP3B

1. Table 8 and Table 9 show that the negation and conjunction of logic CG′3
can be defined in terms of the connectives of logic SP3B.

(¬ x ∧ x) ∨ (¬ x)

2 0 0 0 2 2 0
1 1 2 1 2 1 1
0 2 0 2 0 0 2

¬CG′
3
x x

2 0
2 1
0 2

Table 8: ¬CG′
3
x is expressed in terms of the connectives of SP3B as (¬x∧x)∨

(¬x).
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(x ∧ y) ∧ (x ∨ y)

0 0 0 0 0 0 0
1 0 0 0 1 1 0
2 0 0 0 2 2 0
0 0 1 0 0 1 1
1 2 1 1 1 1 1
2 1 1 1 2 2 1
0 0 2 0 0 2 2
1 1 2 1 1 2 2
2 2 2 2 2 2 2

x ∧CG′
3

y

0 0 0
1 0 0
2 0 0
0 0 1
1 1 1
2 1 1
0 0 2
1 1 2
2 2 2

Table 9: (x ∧CG′
3
y) is expressed in terms of the connectives of SP3B as

(x ∧ y) ∧ (x ∨ y).

2. The next formula expresses the implication connective of CG′3 in terms
of the connectives of SP3B:

(¬(x ∧ x) ∨ y) ∨ ((x ∧ ¬x) ∧ (y ∧ ¬y))

In order to see this, we exhibit the two truth tables (Tables 10 and 11).

α β α ∧ α ¬(α ∧ α) ¬(α ∧ α) ∨ β α ∧ ¬α β ∧ ¬β (α ∧ ¬α) ∧ (β ∧ ¬β)

0 0 0 2 2 0 0 0
1 0 2 0 0 2 0 0
2 0 2 0 0 0 0 0
0 1 0 2 2 0 2 0
1 1 2 0 1 2 2 2
2 1 2 0 1 0 2 0
0 2 0 2 2 0 0 2
1 2 2 0 2 2 0 0
2 2 2 0 2 0 0 0

Table 10: Truth table of α→SP3B β (first part)
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α β (¬(α ∧ α) ∨ β) ∨ ((α ∧ ¬α) ∧ (β ∧ ¬β))

0 0 2
1 0 0
2 0 0
0 1 2
1 1 2
2 1 1
0 2 2
1 2 2
2 2 2

Table 11: Truth table of α→SP3B β in terms of 3 primitive connectives (second
part)

According to Table 11, we can define a non-primitive connective in SP3B,
in terms of the other SP3B connectives, whose truth table is the same
as the truth table for the implication of CG′3:

x→SP3B y := (¬(x ∧ x) ∨ y) ∨ ((x ∧ ¬x) ∧ (y ∧ ¬y))

B.2 Expressing the connectives of SP3B in terms of the con-
nectives of CG′3

1. Table 12 shows that the SP3B negation can be expressed in terms of
the connectives of CG′3: ¬SP3B = (x ∧ ¬x) ∨ (x → (¬x ∧ ¬¬x)), where
all the connectives are CG′3-connectives. The formula in the last column
represents the SP3B negation.

x ¬x ¬¬x x ∧ ¬x ¬x ∧ ¬¬x x→ (¬x ∧ ¬¬x) H

0 2 0 0 0 2 2
1 2 0 1 0 0 1
2 0 2 0 0 0 0

Table 12: H is the formula (¬x ∧ ¬¬x) ∨ (x→ (¬x ∧ ¬¬x)).

2. Table 13 shows that the SP3B conjunction can be expressed in terms of
the connectives of G3 and CG′3 by means of the formula

[∼∼ (x ∧ ¬x)∧ ∼∼ (y ∧ ¬y)] ∨ (x ∧ y)

where ∼ is the negation of G3, ¬, ∨ and ∧ are the negation, disjunction
and conjunction of CG′3 respectively. The connective ∧SP3B is fully ex-
pressed solely in terms of CG′3 connectives when we use the equivalence
∼ x = x→ (¬x ∧ ¬¬x).
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[∼ ∼ (x ∧ ¬ x) ∧ ∼ ∼ (y ∧ ¬ y)] ∨ (x ∧ y)

0 2 0 0 2 0 0 0 2 0 0 2 0 0 0 0 0
2 0 1 1 2 1 0 0 2 0 0 2 0 0 1 0 0
0 2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
0 2 0 0 2 0 0 2 0 1 1 2 1 0 0 0 1
2 0 1 1 2 1 2 2 0 1 1 2 1 2 1 1 1
0 2 2 0 0 2 0 2 0 1 1 2 1 1 2 1 1
0 2 0 0 2 0 0 0 2 2 0 0 2 0 0 0 2
2 0 1 1 2 1 0 0 2 2 0 0 2 1 1 1 2
0 2 2 0 0 2 0 0 2 2 0 0 2 2 2 2 2

x ∧SP3B y

0 0 0
1 0 0
2 0 0
0 0 1
1 2 1
2 1 1
0 0 2
1 1 2
2 2 2

Table 13: [∼∼ (x ∧ ¬x)∧ ∼∼ (y ∧ ¬y)] ∨ (x ∧ y) equivalent to ∧SP3B .
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Benemérita Universidad Atónoma de Puebla
Puebla, México
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