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Twist-structure style semantics for

n-valued logics and applications

Manuel Fidel (in memoriam) and Mart́ın Figallo

Abstract

We intend to present a generalization of the techniques developed by
Fidel, and independently by Vakarelov, widely known as twist-structure
semantics, to the more general context of n-valued logics. We focus here
on the well-known  Lukasiewicz-Moisil algebras of order n+ 1. Departing
from a twist-structure representation for De Morgan algebras, we con-
struct another structure with more axes (2n+2 axes actually) that shows
to represent the Moisil operators more efficiently. With this representa-
tion, the theory of homomorphisms, filters and free algebras is simpli-
fied significantly. Finally, we introduce a relational semantic model (à
la Kripke) for a n-valued logic naturally associated to these structures,
showing the modal nature of the Moisil operators.

Keywords: many valued logics, twist-structures,  Lukasiewicz-Moisil algebras.

1 Introduction

In order to study non-classical logics, for many years, a wide range of alge-
braic structures have been considered and studied. The study of such algebras
presents many similarities and analogies in both concepts and demonstrations.
This may lead to think that there are not methods and principles more general
than those. However, a different line of study have also been considered: it
is possible to study the structure and meaning of algebraic models of certain
non-classical logics by means of tuples. The method of tuples, also known as
the method of twist structures, have shown to be simpler and illuminating.
This technique can be displayed, for example, studying the Nelson logic in [3]
and [9].

In this work, we apply the technique of tuples to the well-known  Lukasiewicz-
Moisil algebras of order n + 1. In these algebras, they are introduced opera-
tors, widely known as Moisil possibility operators, which could be considered
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as modalities. However, some of their properties could prevent us of thinking
them as such. In order to clarify this conflict, we shall introduce the proposi-
tional calculiMn+1 as well as semantic models for them, in the sense of Kripke,
exhibiting the corresponding soundness and completeness theorems. This will
show that Moisil possibility operators can be thought as modalities and that
their unusual properties are due to the fact that they are valid in their models.

The main difference between the treatment here and the one of [3] is that
our algebraic models will be formed by (2n + 2)-tuples. That is, we shall
consider the product of n+ 1 lattices with their n+ 1 dual lattices. With this
representation, the theory of homomorphisms, filters and free algebras will be
simplified significantly.

2 Preliminaries

Early last century J.  Lukasiewicz introduced a class of propositional calculi
by means of matrices in the following way: if x and y denote numbers in the
real interval [0, 1], then the implication → (known as  Lukasiewicz implication)
is defined by: (A) x → y = min(1, 1 − x + y), the negation ∼ is defined
by: (B) ∼x = 1 − x, and the set of designated values is (C) D = {1}. With
ω− LPC we shall denote the propositional calculus which has 〈[0, 1],→,∼, {1}〉
as characteristic matrix.

Let Ln+1 = {0, 1n ,
2
n , . . . ,

n−1
n , 1} and J = {1, 2, . . . , n}. If we consider the

chain Ln+1, instead of the segment [0, 1], along with the operators →,∼ and
the set D as above, we have the matrix of the (n + 1)−valued  Lukasiewicz
propositional calculus (for short (n+ 1)− LPC).

Recall that it was Moisil (in 1941) who first intended to present an algebraic
semantic for (n + 1)− LPC. In order to do so, he introduced what today are
widely known as  Lukasiewicz-Moisil algebras of order (n+1) (or (n+1)-valued
 Lukasiewicz-Moisil algebras) (see [1]), for n being a positive integer, as follows:

Definition 2.1 A  Lukasiewicz-Moisil algebra of order (n + 1) is an algebra
〈A,∨,∧,∼, (φi)i∈J , 0, 1〉 of type (2, 2, 1, (1)i∈J , 0) where J = {1, 2, . . . , n} and
such that 〈A,∨,∧,∼, 0, 1〉 is a De Morgan algebra and (φi)i∈J are unary oper-
ations on A such that: for all i, j ∈ J ,

(C1) φi(x ∨ y) = φix ∨ φiy,

(C2) φix ∨ ∼φix = 1,

(C3) φiφjx = φjx,

(C4) φi∼x = ∼φn+1−ix,
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(C5) i ≤ j implies φix ≤ φjx, and

(C6) φix = φiy, for all i ∈ J , implies x = y.

The success of Moisil was partial since Rose verified later (in 1965) that,
for n ≥ 4, (n + 1)-valued  Lukasiewicz-Moisil algebras are not the algebraic
counterpart of the (n+ 1)- LPC calculus.

On the other hand, these algebras have been extensively studied by different
authors standing out among them R. Cignoli who studied them in his Ph.D.
thesis under the name of Moisil algebras (see[2]).

The standard  Lukasiewicz-Moisil algebra of order (n+ 1) is

Ln+1 = 〈Ln+1,∨,∧,∼, (σi)i∈J , 0, 1〉

where: Ln+1 and ∼ are as above, x ∨ y = max(x, y), x ∧ y = min(x, y) and

σi

(
j

n

)
=

 0 if j + i < n+ 1

1 if j + i ≥ n+ 1
, for every j ∈ {0} ∪ J, i ∈ J. (1)

The following result is well-known.

Theorem 2.2 ([2]) Every  Lukasiewicz-Moisil algebra of order (n+ 1) is iso-
morphic to a subdirect product of algebras Ln+1.

Remark 2.3 Every  Lukasiewicz-Moisil algebra is a Heyting algebra where the
pseudo-complement relative to → can be defined in terms of ∧, ∨, ∼, φi. Be-
sides, the φi’s can be defined in terms of→, ∧, ∨ and ∼, but this is not possible
any more for n ≥ 5 ([2]).

Let A be a De Morgan algebra and let E(A) the family of all prime filters of
A. We denote by Φ the well-known Birula-Rasiowa mapping defined on E(A)
as

Φ(P ) = A \ ∼P, where ∼P = {∼p : p ∈ P}.

Recall that in [5] it was showed that any De Morgan algebra can be em-
bedded in the product L × L? where L is a bounded distributive lattice and
L? is its dual lattice. Indeed, let F = {Pi}i∈I be any family of prime filters of
A such that
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F ∪ Φ(F) = E(A)

Consider, now, the bounded distributive lattice L =
∏
i∈I

Li where Li is the

two-element distributive lattice 2 for all i ∈ I. Then, A can be embedded in
L× L? by means of fA : A→ L× L?

fA(x) = ((x1i )i∈I , (x
2
i )i∈I) (2)

where x1i = 1 iff x ∈ Pi and x2i = 0 iff x ∈ Φ(Pi) for all i ∈ I.

It can be proved that fA(A) ⊆ L × L? is a De Morgan algebra where,
if (x1, x2), (y1, y2) ∈ fA(A) then ∼(x1, x2) = (x2, x1), (x1, x2) ∨ (y1, y2) =
(x1 ∨ y1, x2 ∧ y2), (x1, x2) ∧ (y1, y2) = (x1 ∧ y1, x2 ∨ y2), 0 = (0, 1), and
1 = (1, 0).

If π1 : L×L? → L and π2 : L×L? → L? are the standard projections then
π1(fA(A)) is a sub-lattice of L and π2(fA(A)) is a sub-lattice of L× L? and
π1(fA(A)) = π2(fA(A).

It is worth mentioning that the above representation for a De Morgan
algebra A is not unique: it strongly depends on the family of prime filters F
that we choose. On the other hand, there always exists such a family: it is
enough to consider E(A).

Let T(A) be the subalgebra fA(A) of the product L × L? where L is the
lattice that is constructed by considering E(A) as the family F . It is clear that
fA is a De Morgan isomorphism between A and f(A). Then, this representation
of De Morgan algebras can be recast in categorical terms. Let DM be the
category whose objects are all De Morgan algebras and its morphisms are all
the homomorphisms between De Morgan algebras. On the other hand, let LL?
be the category whose objects are De Morgan subalgebras of products L× L?

where L '
∏
i∈I

2 for any arbitrary set of indexes.

Then, we can extend the operator T to a functor T : DM → LL? by
T(A) = fA(A) and Th = fB ◦ h ◦ f−1A . It is not difficult to see that T is full,
faithful and dense. Then

Theorem 2.4 The categories DM and LL? are equivalent.
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3 (n+ 1)-valued Moisil twist structure

Next, we are shall introduce our models in terms of (2n + 2)-tuples, namely,
(n+ 1)-valued Moisil twist structure.

Definition 3.1 Let L be a bounded distributive lattice (the base lattice). Let
Li, 1 ≤ i ≤ n, be sub-lattices of L, let L? and L?

i be the dual lattices (with
respect to the order) of L and L?

i respectively. Consider the product of (2n+ 2)

lattices: L×L1×· · ·×Ln×L?
n×· · ·×L?

1×L? = L×
n⊗

i=1
Li×

n−1⊗
i=0

L?
n−i×L?. We shall

call (n+1)-valued Moisil twist structure to any sub-lattice N of the product L×
n⊗

i=1
Li ×

n−1⊗
i=0

L?
n−i × L? such that for any x = (x0, x1, . . . , xn, x

?
n, . . . , x

?
1, x

?
0) =

((xi)
n
0 , (x

?
n−i)

n
0 ), y = (y0, y1, . . . , yn, y

?
n, . . . , y

?
1, y

?
0) = ((yi)

n
0 , (y

?
n−i)

n
0 ) in N it is

verified:

(Tw0) if x0 ≤ y0 then xi ≤ yi, for i ∈ J ,

(Tw1) 1 ≤ xi ∨ x?i and xi ∧ x?i ≤ 0, for i ∈ J ,

(Tw2) if i ≤ j then xi ≤ xj and x?i ≥ x?j , for i, j ∈ J ,

(Tw3) x0 ≤ xn and x?0 ≥ x?n,

(Tw4) if xi = yi for all i ∈ J then x = y, and

(Tw5) if (x0, x1, . . . , xn, x
?
n, . . . , x

?
1, x

?
0) ∈ N , then (x?0, x

?
n, . . . , x

?
1, x1, . . . ,

xn, x0) ∈ N and (xi, xi, . . . , xi︸ ︷︷ ︸
n places

, x?i , . . . , x
?
i︸ ︷︷ ︸

n places

, x?i ) ∈ N , for 1 ≤ i ≤ n.

Remark 3.2 (i) Intuitively, x0 represents a positive value, x?0 represents a
negative value (independent from the positive one); x1, . . . , xn represent
the graded positive possibility of some proposition and x?1, . . . , x

?
n the re-

spective negative values. The pairs (xi, x
?
i ) for i ∈ J stand for the classical

possibility values as it can be seen in the following proposition.

(ii) (Tw4) is the well-known Moisil’s determination principle and it is equiv-
alent to (i.e. it could be replaced by)

(Tw4)′ x0 ∧ x?i ∧ yi+1 ≤ y0 and y?0 ≤ x?0 ∨ xi ∨ y?i+1.

This last axiom is due to Cignoli [2] and will be very useful as we shall
see.
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Proposition 3.3 If N ⊆ L ×
n⊗

i=1
Li ×

n−1⊗
i=0

L?
n−i × L? is a (n + 1)-valued

Moisil twist structure, then B = {(xi, x?i ) ∈ Li × L?
i : ((xi)

n
0 , (x

?
n−i)

n
0 ) ∈ N} is

a Boolean algebra taking ∼(a, b) = (b, a), for i ∈ J

Proof. Immediate from Definition 3.1. �

Example 3.4 Let us see the chain L5 as a 5-valued Moisil twist structure. We
take L3 as the base lattice and Li = L2 = {0, 1} for i = 1, 2, 3, 4. Then

0 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

1

4
= (

1

2
, 0, 0, 0, 1, 0, 1, 1, 1, 1)

2

4
= (1, 0, 0, 1, 1, 0, 0, 1, 1, 1)

3

4
= (1, 0, 1, 1, 1, 0, 0, 0, 1,

1

2
)

1 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

In general, we can represent Ln+1 by a Moisil twist structure taking L =
Ln−1 and Li = {0, 1} for i ∈ J . Besides, if n is even natural number Ln+1 has
a center, that is, an element c such that ∼c = c and its coordinates are

n/2

n
= (

n/2

n− 2
, 0, . . . , 0︸ ︷︷ ︸
n/2 places

, 1, . . . , 1︸ ︷︷ ︸
n/2 places

, 0, . . . , 0︸ ︷︷ ︸
n/2 places

, 1, . . . , 1︸ ︷︷ ︸
n/2 places

, 1)

The standard algebra Ln+1 presented as a twist structure will be noted
Tn+1.
Now we are going to define operations on a given (n + 1)-valued Moisil twist
structure.

Definition 3.5 Let x = ((xi)
n
0 , (x

?
n−i)

n
0 ), y = ((yi)

n
0 , (y

?
n−i)

n
0 ) ∈ N . We define

on N the following operations.

(i) ∼x =def (x?0, x
?
n, . . . , x

?
1, x1, . . . , xn, x0),

(ii) x ∨ y =def ((xi ∨ yi)n0 , (x?n−i ∧ y?n−i)n0 ),
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(iii) x ∧ y =def ((xi ∧ yi)n0 , (x?n−i ∨ y?n−i)n0 ),

(iv) φix =def (xi, xi, . . . , xi︸ ︷︷ ︸
n places

, x?i , . . . , x
?
i︸ ︷︷ ︸

n places

, x?i ), for i ∈ J ,

(v) 0 =def ( 0, . . . , 0︸ ︷︷ ︸
n+1 places

, 1, . . . , 1︸ ︷︷ ︸
n+1 places

),

(vi) 1 =def ( 1, . . . , 1︸ ︷︷ ︸
n+1 places

, 0, . . . , 0︸ ︷︷ ︸
n+1 places

).

Proposition 3.6 〈N,∨,∧,∼, 1〉 is a De Morgan algebra.

Proof. Immediate. �

The following property will be useful in the sequel.

Proposition 3.7 If (x0, x1, . . . , xn, x
?
n, . . . , x

?
1, x

?
0) ∈ N then x1 ≤ x0 and

x?1 ≥ x?0.

Proof. By Definition 3.1 (Tw5) and (Tw3). �

From definitions 3.1 and 3.5 and Proposition 3.6, the next result is quite
obvious.

Theorem 3.8 If N is (n+ 1)-valued Moisil twist structure then

〈N,∨,∧,∼, (φi)i∈J , 0, 1〉

is a  Lukasiewicz-Moisil algebra of order (n+ 1).

Proof. We shall verify only the condition (C3) of Definition 2.1. Let
(a, a1, . . . , an, a

?
1, . . . , a

?
n, a

?) ∈ N , then ∼a = (a?, a?n, . . . , a
?
1, a1, . . . , an, a) and

φi∼a = (a?n+1−i, a
?
n+1−i, . . . , a

?
n+1−i︸ ︷︷ ︸

n places

, an+1−i, . . . , an+1−i︸ ︷︷ ︸
n places

, an+1−i)

= ∼(an+1−i, an+1−i, . . . , an+1−i︸ ︷︷ ︸
n places

, a?n+1−i, . . . , a
?
n+1−i︸ ︷︷ ︸

n places

, a?n+1−i)

= ∼φn+1−ia

�

The converse is also valid.
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Theorem 3.9 For every (n+1)-valued  Lukasiewicz-Moisil algebra A there ex-
ists a (n+1)-valued Moisil twist structure N such that 〈N,∨,∧,∼, (φi)i∈J , 0, 1〉
and A are isomorphic.

Proof. Let 〈A,∨,∧,∼, (φi)i∈J , 0, 1〉 a (n + 1)-valued  Lukasiewicz-Moisil al-
gebra. Following what it was done in [5], let F = {Pj}j∈I any family of prime
filters of A such that F ∪ Φ(F) = E(A) and let L =

∏
j∈I

Rj where Rj is the

two-element distributive lattice 2 for all i ∈ I.
Let f : A ↪→ L × L? as in (2) and π1, π2 the respective projections. We

know that π1(f(A)) = π2(f(A)). Now, we have to choose the lattices Li for
1 ≤ i ≤ n, and they have to be sub-lattices of L. It is well-known that, if
Ki = {x ∈ A : φi(x) = x} for 1 ≤ i ≤ n then K1 = · · · = Kn = B(A) where
B(A) is the set of all Boolean elements of A. So, let Li = π1(f(B(A))), for
1 ≤ i ≤ n. It is not difficult to see that L?

i = π2(f(∼B(A))), 1 ≤ i ≤ n.
Since πi is a lattice homomorphism, every Li is a sub-lattice of L and all

xi ∈ Li has a complement that belongs to L?
i . In order to prove that A can

be immersed in L ×
n⊗

i=1
Li ×

n−1⊗
i=0

L?
n−i × L? consider the function f̄ : A →

L×
n⊗

i=1
Li ×

n−1⊗
i=0

L?
n−i × L? defined as follows

f̄(x) = (π1f(x), π1f(φ1x), . . . , π1(fφnx), π1f(∼φnx), . . . , π1f(∼φ1x), π1f(∼x))

Then, f̄(A) ⊆ L ×
n⊗

i=1
Li ×

n−1⊗
i=0

L?
n−i × L? is a n + 1-valued Moisil twist

structure. For example, let’s see that (Tw2) holds. Let ~x ∈ f̄(A), then there
is x ∈ A such that f̄(x) = ~x. Since A is a (n + 1)-valued  Lukasiewicz-Moisil
algebra, φi(x) ≤ φj(x), and since f and π1 are lattice homomorphism we have
that π1(f(φi(x))) ≤ π1(f(φj(x))).

On the other hand, by Theorem 3.8, f̄(A) is  Lukasiewicz-Moisil algebra
of order (n + 1). Besides, it is not difficult to see that f̄ is (n + 1)-valued
 Lukasiewicz-Moisil homomorphism. For instance, let’s see that it preserve
Moisil operators: let x ∈ A and j ∈ J
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f̄(φjx) = (π1f(φjx), π1f(φ1φjx), . . . , π1(fφnφjx), π1f(∼φnφjx), . . . ,
π1f(∼φ1φjx), π1f(∼φjx))

= (π1f(φjx), π1f(φjx), . . . , π1(fφjx)︸ ︷︷ ︸
n places

, π1f(∼φjx), . . . , π1f(∼φjx)︸ ︷︷ ︸
n places

,

π1f(∼φjx))

= φj(π1f(x), π1f(φ1x), . . . , π1(fφnx), π1f(∼φnx), . . . , π1f(∼φ1x),
π1f(∼x))

= φj f̄(x)

Besides, f̄ is injective since f is injective and therefore, f̄(A) and A are
isomorphic algebras. �

Remark 3.10 Any (n + 1)-valued Moisil twist structure is, in particular, a
 Lukasiewicz-Moisil algebra of order (n+1). Therefore, the notion of homomor-
phism, congruence, filter, etc., is the usual in the context of universal algebra.

4 Prime filters, homomorphisms and representation

In order to prove soundness and completeness of the calculus Mn+1, which
will be presented in Section 6, with respect to their semantic models we need
to know in detail the structure of the prime filters of any (n+ 1)-valued Moisil
twist structure.

Recall that in [5] it was proved that every De Morgan algebra D can be
seen as a subset ∅ 6= M ⊆ L × L? where L and L? are a lattice and its dual
respectively such that; (DM1) (0, 1) and (1, 0) are in M , (DM2) (x1, x2) ∈
M implies (x2, x1) ∈ M , and (DM3) (x1, x2), (y1, y2) ∈ M implies (x1 ∧
y1, x2 ∨ y2) ∈ M . Besides, in M , the operations ∼, ∨ and ∧ are defined as
follows: ∼(x1, x2) =def (x2, x1), (x1, x2) ∨ (y1, y2) =def (x1 ∨ y1, x2 ∧ y2), and
(x1, x2) ∧ (y1, y2) =def (x1 ∧ y1, x2 ∨ y2).

At this point, it is worth correcting an omission in [5] concerning the form
of prime filters in a De Morgan algebra presented by a twist-product.

Proposition 4.1 Let M be the De Morgan algebra L×L? as indicated above.
If P is a prime filter of M then P = P0 × I?1 where P0 = π1(P ), ∼P =
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{(x1, x0) : (x0, x1) ∈ P} and I1 = {∼P}. Besides, P0 is a prime filter of L
and I1 is a prime ideal of L?.

Proof. Since π1 is an epimorphism, we have that P0 and I1 are a prime filter
and a prime ideal of L, respectively.

It is clear that P ⊆ P0 × I?1 . Let’s see that P0 × I?1 ⊆ P . Let x ∈ P0 × I?1 .
Then, x = (x0, x1) where x0 ∈ P0, x1 ∈ I1, and there exists y ∈ P such
that y = (x0, y1) ≤ y′ = (x0, 0) ∈ P . Analogously, there exists z ∈ P
such that z = (z0, x1) ≤ z′ = (1, x1) ∈ P . Since P is a filter, we have that
y′ ∧ z′ = x = (x0, x1) ∈ P . �

The reciprocal is stated in the following two propositions.

Proposition 4.2 Let P be a proper prime filter of M = L × L?. Then, P =
P0 × L? or P = L× I?1 where P0 and I?1 are as in the above proposition.

Proof. We know that P = P0 × I?1 = (P0 × L?) ∩ (L × I?1 ). Since P is a
prime filter and P0 ×L?, L× I?1 are filters of M , we have that P = P0 ×L? or
P = L× I?1 . �

and,

Proposition 4.3 Let P be a proper prime filter of M = L × L? and suppose
that P = P0 × I?1 . Then, P0 = L or I?1 = L?.

Proof. Let P be a proper filter of M = L×L? and suppose that P0 ( L and
I?1 ( L?. Then, P0 × I?1 ⊂ P0 × L? and P0 × I?1 ⊂ L× I?1 . So, there are

(x0, x
′
1) ∈ P0 × L? and (x0, x

′
1) /∈ P0 × I?1 ,

(x′0, x1) ∈ L× I?1 and (x0, x
′
1) /∈ P0 × I?1 .

Then, (x0, x1) ∈ P0 × L? and (x0, x1) ∈ L × I?1 ; and so (x0, x1) ∈
(P0 × L?) ∩ (L × I?1 ) = P0 × I?1 . On the other hand, (x0, 1) ≤ (x0, x

′
1), so

(x0, 1) /∈ P0 × I?1 . Analogously, (0, x1) /∈ P0 × I?1 . But (x0, 1) ∨ (0, x1) =
(x0 ∨ 0, x1 ∧ 1) = (x0, x1) ∈ P0 × I?1 which is a contradiction. �

In what follows, we shall rediscover many results by Cignoli ([2]) in the
context of our (n+1)-valued Moisil twist structures. In particular, we shall see
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that every prime filter of a given n + 1-valued Moisil twist structure belongs
to one, and only one, chain of filters with at most n− 1 elements.

Let N ⊆ L×
n⊗

i=1
Li×

n−1⊗
i=0

L?
n−i×L? be a n+1-valued Moisil twist structure.

Let NR = {(x, x?) : ((xi)
n
0 , (x

?
n−i)

n
0 ) ∈ N} ⊆ L× L?. It is clear that NR is a

De Morgan algebra presented as a twist product. Let πj : N → Lj , 0 ≤ j ≤ n
the projection morphisms from N into Lj . Without loss of generality, we may
assume that the π′js are surjective, i.e., πj(N) = Lj .

From what we have just discussed if P is a prime filter of NR then

(1) (P0 × L?)|NR or (2) (L× I?0 )|NR

where P0 = π1(P ) and I0 = π1(∼P ).

Let P be a prime filter of NR of the form (1), i.e., P = (P0 × L?)NR then
we define

Definition 4.4 Let P ′0 =def P0|Ln−1. For every i, 1 ≤ i ≤ n− 1

P i
0 =def {x0 ∈ L : x = ((xi)

n
0 , (x

?
n−i)

n
0 ) ∈ NR, xi ∈ P ′0}.

Then, it is immediate that

Proposition 4.5 P ′0 is an ultrafilter of the Boolean algebra Ln.

Besides,

Proposition 4.6 For 1 ≤ i ≤ n, it holds:

(i) P i
0 is a prime filter of L,

(ii) if x0 /∈ P i
0 then x?0 ∈ P i

0.

Proof. (i) Let’s see that P i
0 is a prime filter. Clearly 1 ∈ P i

0. Suppose that
x0 ∈ P i

0 and there is y0 ∈ L, x0 ≤ y0. Then, there is y = ((yi)
n
0 , (y

?
n−i)

n
0 ) ∈

NR and, by (Tw0), xi ≤ yi. So, yi ∈ P ′0 and therefore y0 ∈ P i
0.

On the other hand, let x0, y0 ∈ L such that x0 ∨ y0 ∈ P i
0. Since the

projection π0 : M → L is surjective, we have that there exist x, y ∈ NR such
that x ∈ ((xi)

n
0 , (x

?
n−i)

n
0 ) and y ∈ ((yi)

n
0 , (y

?
n−i)

n
0 ). But x ∨ y = ((xi ∨
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yi)
n
0 , (x

?
n−i ∧ y?n−i)n0 ) ∈ L and, by hypothesis, x0 ∨ y0 ∈ P i

0 and so xi ∨ yi ∈ P ′0.
By Proposition 4.5, xi ∈ P ′0 or yi ∈ P ′0 and so x0 ∈ P i

0 or y0 ∈ P i
0.

(ii) Finally, suppose that there is x0 ∈ L \ P i
0. Then, there is x = ((xi)

n
0 ,

(x?n−i)
n
0 ) ∈ NR such that xi /∈ P ′0. By Proposition 4.5, x?i ∈ P ′0 and so x?0 ∈ P i

0.
�

Next, we shall see that the filters P i
0’s form a chain.

Proposition 4.7 P i
0 ⊆ P

i+1
0 , for 1 ≤ i < n.

Proof. Let x0 ∈ P i
0. Then, there is x = ((xi)

n
0 , (x

?
n−i)

n
0 ) ∈ NR such that

x0 ∈ L and xi ∈ P ′0. Since xi ≤ xi+1 we have that xi+1 ∈ P ′0; and then
x0 ∈ P i+1

0 . �

Then, the family {(P i
0 × L?)}ni=1 is a chain of prime filters of NR. We can

locate the prime filter P0 in the chain {P i
0}ni=1.

Proposition 4.8 P 1
0 ⊆ P0 ⊆ Pn

0 .

Proof. Let x0 ∈ P 1
0 . Then, there is x = ((xi)

n
0 , (x

?
n−i)

n
0 ) ∈ M such that

x0 ∈ L and x1 ∈ P ′0. By 3.7, x1 ≤ x0 ≤ xn we have that x0 ∈ P ′0. Besides, the
elements x = ((x0)

n
0 , (x

?
0)

n
0 ) ∈ NR. Analogously we prove that P0 ⊆ Pn

0 . �

As an immediate consequence we have:

Corollary 4.9 (P 1
0 × L?) ⊆ (P0 × L?) ⊆ (Pn

0 × L?).

The next result will be fundamental when proving the completeness of the
calculus Mn with respect to our models.

Proposition 4.10 Let x0 ∈ L. The following conditions are equivalent:

(i) x0 ∈ P i
0,

(ii) for every r, i ≤ r ≤ n, x0 ∈ P r
0 ,

(iii) there is r, i ≤ r ≤ n, x0 ∈ P r
0 .
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Proof. It follows essentially from the fact that the family {P i
0}ni=1 form a

chain, choosing r = i when necessary. �

Remark 4.11 The corresponding results for the filters {(P i
0 × L?)}ni=1 of NR

follows immediately. We have an analogous situation with the corresponding
results for the filters {(P i

0 × L1 × · · · × Ln × L?
n × · · · × L?

1 × L?)}ni=1 of NR

Next proposition justifies Cignoli’s choice of the equations defining  Lukasiewicz-
Moisil algebras of order n+ 1.

Proposition 4.12 Let P0 be a prime filter of L. Then, for every 1 ≤ i < n

P0 ⊆ P i
0 or P i+1

0 ⊆ P0

Proof. Suppose that P0 6⊆ P i
0 and P i+1

0 6⊆ P0. Then, there exist x0 ∈ P0 and
y0 ∈ P i+1

0 such that x0 /∈ P i
0 and y0 /∈ P0. By Proposition 4.6 (ii), x? ∈ P i

0

and so x?i ∈ P ′0 ⊆ P0. On the other hand, y0 ∈ P i+1
0 and then yi+1 ∈ P ′0 ⊆ P0.

Therefore, x0∧x?i ∧yi+1 ∈ P0 and by (Tw4)′, y0 ∈ P0 which is a contradiction.
�

Theorem 4.13 Let P0 be a prime filter of L. Then, there exist a unique i,
1 ≤ i ≤ n such that

P0 = P i
0

Proof. Let i0 = max{i : P i
0 ⊆ P0}. By Proposition 4.8, we know that

{i : P i
0 ⊆ P0} 6= ∅. If i0 = n then, by Proposition 4.8 and the definition of i0,

P i0
0 = P0. On the other hand, if i0 ≤ n− 1 then P i0

0 ⊆ P0 and P i0+1
0 6⊆ P0. By

Proposition 4.12, P0 ⊆ P i0
0 . �

Again, it is easy to state the same result for filters of N .

Lemma 4.14 If P0 ⊆ Q0 then P i
0 ⊆ Qi

0, for all 1 ≤ i ≤ n.

Proof. Immediate. �
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Proposition 4.15 Every filter P0 of L belongs to one and only one chain of
filters {P i

0}ni=1.

Proof. Let P0 be a prime filter of L. We know by Theorem 4.13, that P0

belongs to the chain of filters {P i
0}ni=1, i.e., there is i0 such that P0 = P i0

0 .
On the other hand, suppose that there exist a filter Q0 of L such that P0

belongs to the chain {Qj
0}nj=1, i.e., there is j0 such that P0 = Qj0

0 . Then,

P0 = Qj0
0 ⊆ Q

j0+1
0 and, by propositions 4.7 and 4.12, we have that P0 ⊆ Q0 or

Q0 ⊆ P0. If P0 ⊆ Q0 then, for every 1 ≤ k ≤ n, P k
0 ⊆ Qk

0, by Proposition 4.14.
Let k ∈ {1, . . . , n} and let x0 ∈ P k

0 , then x0 ∈ P i
0 for all i = 1, . . . , n

(Proposition 4.10). Then, x0 ∈ P i0
0 = P0 = Qj0

0 and by Proposition 4.10,
x0 ∈ Qk

0. Therefore, both chains of filters coincide.
We proceed analogously if Q0 ⊆ P0. �

All these results related to prime filters of L can be easily be formulated
and proved for filters of M . We leave this task to the patient reader. Besides,
these same results can be obtained if we assume that the filter P of M is of
the form L× I?0 .

Next theorem is consequence of all the stated above and it will be used in
the sections of semantical models. This formulation is due to Cignoli:

Theorem 4.16 (Cignoli) Every prime filter of n+1-valued Moisil twist struc-
tures belongs to one, and only one, chain of prime filters with at most n ele-
ments. The set of all prime filters ordered by inclusion is the cardinal sum of
chains with at most n elements.

Lemma 4.17 Let P = P0 × L? be a prime filter of NR. If P0 = P i
0 then

Φ(P ) = P
(n+1−i)
0 × L?.

Proof. x ∈ Φ(P ) ⇔ x /∈ ∼P ⇔ ∼x ∈ P = P i
0 × L? ⇔ x?n+1−i /∈ P ′0 ⇔

x?0 /∈ P
n+1−i
0 ⇔ x0 ∈ Pn+1−i

0 ⇔ x ∈ Pn+1−i
0 × L?. �

As a consequence we have the following corollary.

Corollary 4.18 (n+1)-valued Moisil twist structures verify the Kleene’s prop-
erty.
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Proof. It is enough to see that for every prime filter P of L it holds:
P ⊆ Φ(P ) or Φ(P ) ⊆ P . But this is consequence of the above lema and the
fact that both filters belong to the same chain. �

Regarding simple and semisimple  Lukasiewicz-Moisil algebras of order (n+
1) the treatment in our context is quite simple. This is due to the fact that
the study of the homomorphisms of (n + 1)-valued Moisil twist structures is
reduced to the study of lattice homomorphisms.

Indeed, we have already seen that the standard algebras Ln+1 can be pre-
sented by (2n + 2)-tuples using the lattice chain with n − 1 elements and the
lattice L2 = {0, 1} for the subbases. The only homomorphic images of these
lattices are chains with less elements and the same L2 respectively. Then, the
only homomorphic images of Ln+1 are the subalgebras of Ln+1. Therefore, by
definition, the algebras Ln+1 are simple.

On the other hand, any other simple algebra have Ln+1 as homomorphic
image since any chain of prime filters (of the kind we have seen above) in the
lattice have a maximal filter Pn. Then, these algebras are semisimple and it
holds the next representation theorem due to Moisil.

Theorem 4.19 (Moisil) Every n+ 1-valued Moisil twist structures is isomor-
phic to a subdirect product of algebras Tn+1.

5 Construction of the free n+ 1-valued Moisil twist structure

In this section we shall construct the free  Lukasiewicz-Moisil algebras of order
(n + 1) using its representation as a twist product. The simplicity of this
construction will show, once again, the power of twist structures.

Let 〈G〉Tn be the n+ 1-valued Moisil twist structure generated by a subset

G ⊆ L×
n⊗

i=1

Li ×
n−1⊗
i=0

L?
n−i × L?,

satisfying (Tw0), (Tw1), (Tw2), (Tw3) and (Tw4).
That is, 〈G〉Tn is the least n+ 1-valued Moisil twist structure that contains

G. On the other hand, let 〈G〉L be the lattice generated by G in the same
product. Consider now the following sets.

∼G =def {(g?0, g?n, . . . , g?1, g1, . . . , gn, g0) : (g0, g1, . . . , gn, g
?
n, . . . , g

?
1, g

?
0) ∈ G},
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φiG =def {(gi, gi, . . . , gi, g?i , . . . , g?i , g?i ) : (g0, g1, . . . , gn, g
?
n, . . . , g

?
1, g

?
0) ∈ G},

∼φiG =def {(g?i , g?i , . . . , g?i , gi, . . . , gi, gi) : (g0, g1, . . . , gn, g
?
n, . . . , g

?
1, g

?
0) ∈ G},

for i = 1, . . . , n. Then, it is possible to prove the next proposition.

Proposition 5.1 〈G ∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪ ∼G〉L = 〈G〉Tn.

Proof. (I) 〈G〉Tn is a lattice which contains G ∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪ ∼G,

therefore

〈G ∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪ ∼G〉L ⊆ 〈G〉Tn .

(II) LG = 〈G ∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪ ∼G〉L is a n+ 1-valued Moisil twist

structure. Indeed, this is proved using induction on the length of the expres-
sions of LG and taking into account that these expressions are built from ele-

ments (disjunctions of conjunctions of elements) of G∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪

∼G. On the other hand, the elements of G∪
n⋃

i=1
φiG ∪

n⋃
i=1
∼φiG ∪∼G satisfy

(Tw0), (Tw1), (Tw2), (Tw3), (Tw4) and (Tw5); and taking into account the
De Morgan Laws and the properties of the φi’s we have that (Tw0), (Tw1),
(Tw2), (Tw3), (Tw4) and (Tw5) hold for every expression. Therefore, we have
〈G〉Tn ⊆ LG. �

For every i = 1, . . . , n, let Li = 〈φiG〉L. Then, it is clear that 〈∼φiG〉L = L?
i

and both, Li and L?
i , are sublattices of L = 〈G〉L.

Let H be a lattice such that π0〈G〉Tn ⊆ H. Consider the following sets

G′0 = π0(G),

G′i = πi(φiG), for 1 ≤ i ≤ n,

G′n+i = πi(∼φn−i+1G), for 1 ≤ i ≤ n,

G′2n+1 = π0(∼G).

Then, the following result constitute a link between the free n + 1-valued
Moisil twist structure and its base lattice.
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Proposition 5.2 If H = 〈
2n+1⋃
i=0

G′i〉L then H = π0〈G〉Tn.

Proof. Let’s see that H ⊆ π0〈G〉Tn . It is enough to see that
2n+1⋃
i=0

G′i ⊆

π0〈G〉Tn . Suppose that x ∈
2n+1⋃
i=0

G′i. If x ∈ G′0, then x ∈ π0(G). Since

G ⊆ 〈G〉Tn , we have that π0G ⊆ π0〈G〉Tn . Therefore, x ∈ π0〈G〉Tn . If x ∈ G′i =
πi(φiG) ⊆ π0(φiG) ⊆ π0(G), so x ∈ π0〈G〉Tn .

The other cases are analogous. �

Now we are going to exhibit a way to build free n + 1-valued Moisil twist
structures by means of free distribuitve bounded lattices.

Letm be a denumerable cardinal number and let FreeL(K) the free bounded
distributive lattice generated by a set K = {gi} of size (2n+ 2)×m if m is
finite or ω otherwise. Consider the following sets for 1 ≤ i ≤ n.

K0 = {gj ∈ K : j ≡ 0 (mod 2n+ 2)},

Ki = {gj ∈ K : j ≡ i (mod 2n+ 2)},

Kn+i = {gj ∈ K : j ≡ (n+ i) (mod 2n+ 2)},

K2n+1 = {gj ∈ K : j ≡ (2n+ 1) (mod 2n+ 2)}.

It is clear that Kk ∩ Kl = ∅ if k 6= l and K =
2n+1⋃
k=0

Kk. Besides, |K0| =

· · · = |K2n+1| = m. Let

G = {g = (g(2n+2)rg , g(2n+2)rg+1, . . . , g(2n+2)rg+(2n+1)) ∈
2n+1⊗
j=0

Kj : rg ∈ N,

0 ≤ rg < m},

and let G′i as above for 1 ≤ i ≤ 2n+ 2.

Remark 5.3 |G| = m and for every gi ∈ K there exists one, and only one,
g ∈ G such that gi is a coordinate of g.

Consider now the product

〈K〉L ×
2n⊗
i=1

〈Ki〉L × 〈K〉?L,
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and let 〈G〉Tn the n + 1-valued Moisil twist structure generated by G in this
product.

Theorem 5.4 If 〈K〉L is the free distributive bounded lattice generated by K,
then 〈G〉Tn is the free n+ 1-valued Moisil twist structure generated by G.

Proof. Let f : G→M , where M ⊆ L̄×
n⊗

i=1
L̄i×

n+1⊗
i=0

L̄?
n−i× L̄? is an arbitrary

n+ 1- valued Moisil twist structure. Then f induces a function f̄ from K in L̄
in the following way:

f̄(gi) = πj(f(g))

where g is the unique element of G such that gi is one of its coordinates
and j is such that 0 ≤ j < 2n+ 1 and i ≡ j (mod 2n+ 2).

By Remark 5.3, we know that f̄ is well defined. Then, there exists a unique
homomorphism h̄ : 〈K〉L → L̄ that extends f̄ . Let h be the function defined
as follows: if x = (x0, . . . , x2n+1) ∈ 〈G〉Tn then

h(x) = (h̄(x1), . . . , h̄(x2n+1))

It is clear that h is well defined and that it is a homomorphism. Let’s see
that h extends f on G. Let g ∈ G,

h(g) = h((g(2n+2)rg , g(2n+2)rg+1, . . . , g(2n+2)rg+(2n+1)))

= (h̄(g(2n+2)rg), h̄(g(2n+2)rg+1), . . . , h̄(g(2n+2)rg+(2n+1)))

= (f̄(g(2n+2)rg), f̄(g(2n+2)rg+1), . . . , f̄(g(2n+2)rg+(2n+1)))

= (π0(f(g)), π1(f(g)), . . . , π2n+1(f(g)))
= f(g)

Finally, we need to verify that h(〈G〉Tn) ⊆M . Consider the following set

S = {x ∈ 〈G〉Tn : h(x) ∈M}

Then, (1) G ⊆ S since h extends f ; and (2) S is a sub-algebra of 〈G〉Tn
since h is a homomorphism. From (1) and (2), we have that S = 〈G〉Tn and so
h(〈G〉Tn) ⊆M and then h : 〈G〉Tn →M . That is to say that 〈G〉Tn is the free
n+ 1-valued Moisil twist structure with m generators. �

Also, it can be proved that:

Proposition 5.5 If 〈K〉L is free, then 〈K〉L and 〈G〉Tn are isomorphic lattices.



Twist-structure style semantics for n-valued logics 19

The above construction was made with the sole intention of showing that,
due to the De Morgan laws, the complete distributivity of the φi’s and other
properties (φiφj = φj), the expressions in the correspondent logic are precisely
those that are obtained applying the connectives ∨, ∧ to the propositional
variables, their negations, the modal connectives and their negations to these
same variables.

6 The propositional calculus Mn+1

In this section, we introduce the calculus Mn+1, based on the positive intu-
itionistic propositional calculus, that will be demonstrated to be sound and
complete with respect to (n+ 1)-valued Moisil twist structures. This calculus
contains the operators φi whose intended meaning is that of the graduation of
the possibility of a given proposition.

The formulas of this calculus are built up in the usual way from the count-
able set V ar = {pi}i∈I of propositional variables by means of the connectives→
(implication), ∨ (disjunction), ∧ (conjunction), ∼ (negation) and φi, for i ∈ J
(modal operators). With Fm we denote the term algebra in this language, i.e.,
Fm = 〈Fm,→,∨,∧,∼, {φi}i∈I〉.

The connective ↔ (equivalence) is defined in the usual way

p↔ q ≡def (p→ q) ∧ (q → p)

We shall eliminate parenthesis following the usual convention that connec-
tives ∼, φ1, . . . , φn binds more strongly than either ∧ or ∨ and each of them,
in turn, binds more strongly that either → or ↔.

The following are the axiom schemas ofMn+1 (where α, β, γ ∈ Fm denote
formulas):

(A1) α→ (β → α),

(A2) (α→ (β → γ))→ ((α→ β)→ (α→ γ)),

(A3) α→ α ∨ β,

(A4) α→ β ∨ α,

(A5) (α→ β)→ ((γ → β)→ (α ∨ γ → β)),

(A6) α ∧ β → α,

(A7) α ∧ β → β,
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(A8) (α→ β)→ ((α→ γ)→ (α→ β ∧ γ)),

(A9) α↔ ∼∼α,

(A10i) φi(α ∨ β)→ φiα ∨ φiβ, i ∈ J ,

(A11i) φiα ∨ ∼φiα, i ∈ J ,

(A12i) φiφjα↔ φjα, i ∈ J ,

(A13i) φi∼α↔ ∼φnα, i ∈ J ,

(A14i) φiα→ φi+1α, i ∈ J ,

(A15i) α→ φnα, i ∈ J ,

(A16i) α ∧ ∼φiα ∧ φi+1β → β, i ∈ J ,

The rules of Mn+1 are the following:

(MP)
α, α→ β

β
(R2)

α→ β

∼β → ∼α
(R3i)

α→ β

φiα→ φiβ
, i ∈ J

As it is usual, we shall say that α → β or α ↔ β are provable in Mn+1,
denoted `n+1 α→ β or `n+1 α↔ β, if they belong to the least set of formulas
that contain the axioms listed above and that is closed by the rules (MP), (R2)
and (R3i).

Proposition 6.1 The following formulas are provable in Mn+1

(i) `n+1 ∼(α ∨ β)↔ ∼α ∧ ∼β,

(ii) `n+1 φiα ∨ φiβ → φi(α ∨ β).

We say that α ∈ Fm is valid (in the (n+1)-valued Moisil twist structures),
noted |= α, iff for every (n + 1)-valued Moisil twist structures N and every
h ∈ Hom(Fm,N) we have that h(α) = 1. By the usual methods it can be
proved the soundness and completeness of this logic with respect to (n + 1)-
valued Moisil twist structures. Indeed, first, we define the equivalence relation
≡ on the set of formulas as α ≡ β iff `n+1 α ↔ β. Then, it can be proved
that this relation is compatible with all the connectives of the logic Mn+1.
Therefore, it is possible to define the (n + 1)-valued Moisil twist structures
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Ln+1, the Lindenbaum algebra of Mn+1, considering (2n + 2)−tuples in the
following way:

(|α|, |φ1α|, . . . , |φnα|, |∼φnα|, . . . , |∼φ1α|, |∼α|)

where |α| is the equivalence class of the formula α. So,

Theorem 6.2 Let α ∈ Fm. The following conditions are equivalent:

(i) `n+1 α,

(ii) |= α.

It is worth mentioning that in the proof of Theorem 6.2, it is only necessary
to use properties of distributive lattices.

On the other hand, it can be showed that Ln+1 is the free (n + 1)-valued
Moisil twist structures with ℵ0 generators which is the cardinal of the set
of propositional variables. Besides, Tn+1 is the characteristic matrix of the
calculus Mn+1, i.e., `n+1 α→ β iff |α| ≤ |β|.

As a consequence of Theorem 4.19 we have that the chain Tn+1 is a char-
acteristic matrix of Mn+1 and therefore:

Corollary 6.3 Mn+1 is decidable.

7 Relational Semantic Models

In this section, we shall introduce relational semantic models for the logicMm

à la Kripke. This will show that some conditions are fulfilled in such a way
that the operators φi can be seen as modal.

These models are different from the ones introduced in [4].

Definition 7.1 A Moisil n + 1-structure is a poset 〈K,≤〉 where K =
m⋃
i=1

Ki

with m ≥ 1 and Ki (1 ≤ i ≤ m) is a chain with at most n elements. Each
element of any chain will be called a chain link and K will be said a set of
possible worlds.

To sum up, a Moisil n + 1-structure is the cardinal sum of chains with at
most n links.

Now, we shall introduce the concept of semantic models for the Mn+1.
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Definition 7.2 A Moisil model of order n + 1 is a system 〈K,≤, a〉 where
〈K,≤〉 is one chain of one Moisil n+ 1-structure. We shall assume that K =
{ek}rk=1 for some 1 < r ≤ n and that ki ≤ kj iff i ≤ j. An assignment is a map
a = 〈a+k , a

−
k 〉 for 1 ≤ k ≤ r formed by a pair of applications from the product

K × V ar into the set {0, 1} where V ar is the set of propositional variables.
There is a unique extension v = 〈v+k , v

−
k 〉 of a such that v is a homo-

morphism from K × Fm to {0, 1}. We shall say that v is a valuation. This
extension can be constructed inductively in the following way:

(V1) v+k (p) = a+k (p) and v−k (p) = a−k (p) where p is a propositional variable.

(V2) v+k (p ∨ q) = 1 iff v+k (p) = 1 or v+k (q) = 1. Otherwise, v+k (p ∨ q) = 0.
v−k (p ∨ q) = 0 iff v−k (p) = 0 and v−k (q) = 0. Otherwise, v−k (p ∨ q) = 1.

(V3) v+k (p ∧ q) = 1 iff v+k (p) = 1 and v+k (q) = 1. Otherwise, v+k (p ∧ q) = 0.
v−k (p ∧ q) = 0 iff v−k (p) = 0 or v−k (q) = 0. Otherwise, v−k (p ∧ q) = 1.

(V4) v+k (∼p) = 1 iff v+k (p) = 0. Otherwise, v+k (∼p) = 0.
v−k (∼p) = 0 iff v−k (p) = 1. Otherwise, v−k (∼p) = 1.

(V5) v+k (φip) = 1 iff v+r (p) = 1 for all r ∈ {i, . . . , n} iff v+r (p) = 1 for some
r ∈ {1, . . . , i}. Otherwise, v+k (φip) = 0.
v−k (φip) = 0 iff v−r (p) = 0 for all r ∈ {i, . . . , n} iff v−r (p) = 0 for some
r ∈ {1, . . . , i}. Otherwise, v−k (φip) = 1.

(V6) v+k (∼φip) = 1 iff v+k (φip) = 0. Otherwise, v+k (∼φip) = 0.
v−k (∼φip) = 0 iff v−k (φip) = 1. Otherwise, v+k (∼φip) = 1.

(V7) v+k (p→ q) = 1 iff v+k (p) = 1 implies v+k (q) = 1. Otherwise, v+k (p→ q) =
0.
v+k (p→ q) = 0 iff v+k (p) = 0 implies v+k (q) = 0. Otherwise, v+k (p→ q) =
1.

Recall that in (V6) ∼ is the Boolean complement.

Definition 7.3 We shall say that the formula α→ β is valid, noted |=n α→ β
if and only if for every Moisil n+1-structure; every valuation v = (v+k , v

−
k )nk=1;

and every k,

(v+k (α), v−k (α)) = (1, 0) implies (v+k (β), v−k (β)) = (1, 0)

Taking into account (V5) and Kripke’s interpretation of modal operators we
can interpret φ1 as a necessity operator, φn as a possibility operator and φi for
1 < i < n as some intermediate graduation between necessity and possibility.
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Lemma 7.4 Let α ∈ Fm. If there is a formal proof for α in Mn+1, i.e.
`n+1 α, then |=n+1 α.

Proof. It is not difficult to see that all axioms of Mn are valid and that
the rules preserve validity in every Moisil n + 1-structure. As an example,
we shall see that (A16i) is valid. Suppose that v+k (α ∧ ∼φiα ∧ φi+1β) = 1
and v+k (β) = 0 in some chain of some Moisil n + 1-structure. Then, by (V4),
v+k (α) = 1, v+k (φiα) = 0 and v+k (φi+1β) = 1. If k ≤ i, from v+k (α) = 1, by (V5),
we have that v+k (φiα) = 1 which is a contradiction. Then k 6≤ i, i.e., k ≥ i+ 1,
but then v+k (φi+1β) = 1 contradicts v+k (β) = 0, by (V5). Analogously, we work
with v−. �

Reciprocally, every formula that is valid in every Moisil n + 1-structure
is also valid in the Moisil n + 1-structure formed by the prime filters of the
Lindenbaum algebra Ln+1; and therefore it is a theorem of Mn+1.

In order to present a completeness theorem we are going to construct a
canonical Moisil n + 1-structure for the logic Mn. This canonical model will
verify the following fundamental property:

`n+1 α→ β iff α→ β is valid in the canonical model.

Let PLn+1 the set of all prime filters of the of Ln+1. We already know that
this set is a cardinal sum of chains with at most n elements. It can be seen
without any difficulty that PLn+1 is a Moisil n+ 1-structure.

Consider now the following assignment from one chain of PLn+1 :

a = (a+k (p), a−k (p)) = (1, 0) iff (|p|, |∼p|) ∈ k.

The classic argument here is the following: if α is not a theorem of Mn+1

then |α| 6= 1, then there is a prime filter that contains 1 but do not contain |α|.
This prime filter belongs to every canonical model obtained from Ln+1, where
α is not valid. Therefore, we have:

Lemma 7.5 Let α ∈ For. If |=n+1 α then `n+1 α.

8 Conclusions

We applied successfully the technique of tuples to represent  Lukasiewicz-Moisil
algebras of order n + 1 and in this way we provide a very suitable semantic
model to the n+ 1-valued logic Mn+1.
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We have shown that, when we are dealing with many valued logics, more
than two axes in the product structure can be very suitable for describing the
logic as well as the algebraic structure naturally associated to it. In many
cases, these models have shown to be simpler, needing simpler technical work
since the study is reduced to the axes which usually are well-known algebraic
structures. Besides, it is semantically clearer when we are trying to determine
the logical values of propositions.

We think that these ideas can be explored in order to provide new algebraic
semantic models for a wide number of non-classical logics.
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Universidad Nacional del Sur (UNS)
Bah́ıa Blanca, Argentina
E-mail: mmfidel@gmail.com

Mart́ın Figallo
Departamento de Matemática
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