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Abstract

This paper develops a new completeness proof of da Costa’s paracon-
sistent logic C1, w.r.t. the class of F1-structures, whose original definition
is indebted to M. Fidel in [7]. The novelty of the proof here presented
is grounded on the fact that such class can be characterized in a simpler
way (cf. [11]), together with a simpler reformulation of the F1-valuations
involved in Fidel’s original result. By the way, it is shown that the proof
of decidability of C1 can be also simplified. Moreover, this new demons-
tration shows the evident connection between the canonical F1-structure
and the quasi-matrix semantics, originally proposed in [6].
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1 Introduction and preliminaries

One of the first semantics for the paraconsistent calculi Cn, with 1 ≤ n ≤ ω (see
[5]), was provided by M. Fidel by means of the (today called) F -structures, in
[7]. Briefly, this kind of semantics, which will be presented later, consists of a
class of algebraic-relational structures together with a family of non homomor-
phical interpretation functions. So, for every Cn-calculus (which is defined de-
termining a consequence relation `Cn), its respective class Fn of Fn-structures
determines a relation |=Cn in such a way that Γ `Cn α iff Γ |=Cn α, for every
Γ ∪ {α} ⊆ Fm. Moreover, the class Fn determines the decidability of every
Cn-calculus (actually, this is the main result of such paper).

However, it is not so easy to work with Fn-structures in a general way, due
to the complexity of its definition. An alternative, simpler characterization
of F1-structures was provided in [11], as a (partial) solution to this operative
problem. So, it is natural (taking into account this new characterization) to
simplify the definition of the F1-bivaluations involved in the relation |=Cn .
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Therefore, using this alternative definition, the completeness proof relating
`C1 with |=C1 can be formulated in a very simple way. This paper shows such
simplifications, indeed. Moreover, it will easily obtained the decidability of
C1 based on F1-structures, by means of the canonical F1-structure 〈B2, f〉, to
be defined later. In addition, it will be discussed the following point: it is
well-known that another semantics for the Cn-calculi was presented in [6] by
means of the so-called quasi-matrices (determining the relations |=Qn). So, we
will show additionally that, in the case of the quasi-matrix for C1, it can be
understood as the own canonical F1-structure 〈B2, f〉, explained in a different
way. Actually, this result will follow easily from the simplified semantics for
C1. Finally, we will discuss briefly the relations of F1-structures (such as they
are presented here) with respect to previous works.

The formalism used in this paper will be as simple as possible. We will
fix the set Fm of formulas as the least set containing a countable set V ar
of atomic formulas, and being closed by the applications of the connectives
¬, &, ∨ and ⊃ (with the usual arities) and with the help of parenteheses
behaving as punctuation symbols. Recall here that Fm can be understood
as the absolutely free algebra generated by the set of operations {¬,∨,&,⊃}
over V ar. Some other standard definitions and notions from algebraic logic
(such as homomorphism, quotient algebras, products, projections, subalgebras,
Boolean algebras and so on) will be used, following the formalism of [1] or [13].
In this context, greek (capital) letters are metavariables over (sets of) formulas,
meanwhile Roman letters will be used to denote elements/sets of the involved
algebras. If necessary, some additional notions will be added along this paper.

2 Fn-structures: a brief overview

The starting point of our paper will be the definition of the Cn-logics, by means
of a Hilbert-style axiomatization (even when we will work specifically with C1).
For that, recall the following well-known abbreviations:

α◦ := ¬ (α&¬α)
α(1) := α◦

α(n) := α(n−1)&
(
α(n−1)

)◦
Definition 2.1 Let n be a natural number. The logic Cn is given by means
of a Hilbert-style axiomatics (defining the relation `n⊆ ℘(Fm)×Fm as usual),
such as it was presented in [5].
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A1) α ⊃ (β ⊃ α)
A2) (α ⊃ β) ⊃ ((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ γ))
A3) (α ⊃ γ) ⊃ ((β ⊃ γ) ⊃ (α ∨ β ⊃ γ))
A4) α&β ⊃ α
A5) α&β ⊃ β
A6) α ⊃ (β ⊃ α&β)
A7) α ⊃ α ∨ β

A8) β ⊃ α ∨ β
A9) α ∨ ¬α

A10) ¬¬α ⊃ α.
A11) β(n) ⊃ ((α ⊃ β) ⊃ ((α ⊃ ¬β) ⊃ ¬α))
A12) α(n) & β(n) ⊃ (α & β)(n),
A13) α(n) & β(n) ⊃ (α ∨ β)(n)

A14) α(n) & β(n) ⊃ (α ⊃ β)(n).

The only rule of inference used here is Modus Ponens:
α ⊃ β, α

β
.

Remark 2.2 In the case of the logic C1, the axioms A11)-A14) are simply:
A11) β◦ ⊃ ((α ⊃ β) ⊃ ((α ⊃ ¬β) ⊃ ¬α)) A13) α◦ & β◦ ⊃ (α ∨ β)◦

A12) α◦ & β◦ ⊃ (α & β)◦ A14) α◦ & β◦ ⊃ (α ⊃ β)◦.

The following result lists some well-known properties of `Cn (and, in par-
ticular, of `C1) that will be used along this paper. We omit their proof, since
they are already known in the specialized literature.

Proposition 2.3 For every 1 ≤ n ≤ ω and Γ∪{α, β} ⊆ Fm, the relation `Cn

verifies:
(1) (Syntactic Deduction Theorem): Γ, α `Cn β iff Γ `Cn α ⊃ β.
(2) `Cn α ⊃ α
(3) α ⊃ β, β ⊃ γ `Cn α ⊃ γ
(4) For every connective # ∈ {∨,&}, if Γ `Cn α ⊃ γ and Γ `Cn β ⊃ δ, then
Γ `Cn α#β ⊃ γ#δ.
(5) If Γ `Cn α ⊃ β and Γ `Cn γ ⊃ δ, then Γ `Cn (β ⊃ γ) ⊃ (α ⊃ δ) .
(6) Γ, α◦, α,¬α `Cn β.
(7) `Cn α◦ ∨ α
(8) ¬ (α◦&¬α) `Cn α

With respect to the semantics for the Cn-logics, it was defined in [7] a
model for them, by means of the class Fn of Fn-structures, as we said. We
will recall the basics about these semantics. For that, let us fix some alge-
braic notation: every Boolean algebra will be denoted usually as an algebra
L = (L,∨,∧,→,−, 0, 1), carrying this simbology the usual meaning. To avoid
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unnecessary notation, often we will denote every Boolean algebra L simply by
L (its support). All the operations in Boolean algebras will be indexed when
necessary.

Definition 2.4 An F -structure for Cn (or, simply, an Fn-structure) is a
system: 〈

L, {Nx}x∈L, {N (n)
x }x∈L

〉
being L a bounded classical implicative lattice1 of the form (L,∨,∧,¬,→, 0, 1),
and the families {Nx}x∈L and {N (n)

x }x∈L verify:

(F-1) For every x ∈ L, ∅ 6= Nx ⊆ L and:

(a) If x′ ∈ Nx, then x ∨ x′ = 1.

(b) For every x′ ∈ Nx exists x′′ ∈ Nx′ , such that x′′ ≤ x.

(F-2) {N (n)
x }x∈L is a family of non-void subsets of L.

(F-3) If x′ ∈ Nx and y′ ∈ Ny, then exists (x ∧ y)′ ∈ Nx∧y such that (x ∧ y)′ ≤
x′ ∨ y′.

(F-4) If x(n) ∈ N
(n)
x and y(n) ∈ N

(n)
y , then exist (x∨y)(n) in N

(n)
x∨y and (x → y)(n)

in N
(n)
(x→y), such that x(n) ∧ y(n) ≤ (x∨ y)(n) and x(n) ∧ y(n) ≤ (x → y)(n).

(F-5) For every x(n) ∈ N
(n)
x exist x′ ∈ Nx, x′′ ∈ Nx′ , x1 ∈ Nx∧x′ , (x1)′ ∈ Nx1 ,

(x1)′′ ∈ N(x1)′ , x2 ∈ Nx1∧(x1)′ , (x2)′ ∈ Nx2 , (x2)′′ ∈ N(x2)′ ,..., xn ∈
Nxn−1∧(xn−1)′ , such that:

(a) (xk)′′ ≤ xk (with k = 0, . . . , n− 1; x0 = x);2

(b) xk ≤ (xk−1)′ ∨ (xk−1)′′ (with k = 1, . . . , n);

(c) (xk)′ ≤ xk−1 ∧ (xk−1)′ (with k = 1, . . . , n− 1);

(d) x(n) = x1 ∧ x2 ∧ · · · ∧ xn;

(e) x ∧ x′ ∧ x(n) = 0.

(F-6) For every x′ ∈ Nx, there are x(n) ∈ N
(n)
x , x′′ ∈ Nx′ , x1 ∈ Nx∧x′ , (x1)′ ∈

Nx1 , (x1)′′ ∈ N(x1)′ , x2 ∈ Nx1∧(x1)′ ,..., xn ∈ Nxn−1∧(xn−1)′ , such that
conditions (F-5) (a)-(e) are satisfied.

1Given a bounded classical implicative lattice (L,∨,∧, ,→, 0, 1), we can define a Boolean
negation “−” by −x := x → 0, for all x ∈ L. In turn, if (L,∨,∧,−, 0, 1) is a Boolean algebra,
then can define a relative pseudocomplement “→” by x → y := −x ∨ y, for all x, y ∈ L.

2Please, distinguish between x◦ (x is well-behaved) and x0 (=x).
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Remarks 2.5 The previous definition is textually transcribed from [7]. Note
that in item (c) of condition (F-5) there is some misunderstanding with the
superscripts: we suppose here that this item means, simply, that (x1)′ ≤ x∧x′

(since x0 = x, as it was already remarked). Therefore, it would be necessary
to ask for the existence of (x1)′ ∈ Nx1 , additionally. It is possible to prove (see
[11] and [10]) that this element always exists, anyway. This fact will justify the
“missing” of (c) (for the case of C1) in the next definition, as we shall see.

On the other hand, in [7] there is not formulated any condition similar to
the given one in Definition 2.4 (F-4), for the case of ∧. Anyway, in [10] it is
shown that (at least when n = 1) the function ∧ verifies such kind of properties,
indeed. By the way, it should be remarked that this is not an obvious result.

Turning back to Definition 2.4, it can be defined (taking into account the
previous remarks):

Definition 2.6 An F 1-structure is a system 〈L, {Nx}x∈L, {N◦
x}x∈L〉 such

that:

(F-1) For every x ∈ L, ∅ 6= Nx ⊆ L and:

(a) If x′ ∈ Nx, then x ∨ x′ = 1.

(b) For every x′ ∈ Nx exists x′′ ∈ Nx′ , such that x′′ ≤ x.

(F-2) {N◦
x}x∈L is a family of non-void subsets of L.

(F-3) For every x, y ∈ L, and for every x′ ∈ Nx, y′ ∈ Ny, there is (x∧y)′ ∈ Nx∧y

such that (x ∧ y)′ ≤ x′ ∨ y′.

(F-4) For every x, y ∈ L, if x◦ ∈ N◦
x and y◦ ∈ N◦

y , then there are (x ∨ y)◦

in N◦
x∨y and (x → y)◦ in N◦

(x→y), satisfying x◦ ∧ y◦ ≤ (x ∨ y)◦ and
x◦ ∧ y◦ ≤ (x → y)◦.

(F-5) For every x ∈ L and x◦ ∈ N◦
x there are x′ ∈ Nx, x′′ ∈ Nx′ and x1 ∈ Nx∧x′

such that:

(a) x′′ ≤ x;

(b) x1 ≤ x′ ∨ x′′

(c) x◦ = x1;

(d) x ∧ x′ ∧ x◦ = 0.

(F-6) For every x ∈ L, x′ ∈ Nx, there are x◦ ∈ N◦
x , x′′ ∈ Nx′ and x1 ∈ Nx∧x′

satisfying conditions (a)-(d) of (F-5).
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Remark 2.7 The previous formalism can be cleaned-up as follows: for every
x ∈ L, let us define ↑x (↓x) as being the up-set (down-set) generated for
x. In addition, let us define the para-annihilator of x 3 in the following way:
xᵀ:={y ∈ L : x∨y = 1}. Using this notions, an F1-structure can be understood
as a system 〈L, f,F〉 such that:

(f-1) f is a function (f : L → ℘(L) \{∅} ), verifying:

(a) f(x) ⊆ xᵀ;

(b) f(y) ∩ ↓x 6= ∅ (for every y ∈ f(x)).

(f-2) F is a function (F : L → ℘(L) \{∅} ).

(f-3) For every x, y ∈ L, for every z ∈ f(x), for every w ∈ f(y), it holds that
f(x ∧ y) ∩

y(z ∨ w) 6= ∅.

(f-4) For every x, y ∈ L, for every z ∈ F(x), for every w ∈ F(y), it is satisfied:

(a) F(x ∨ y) ∩
x(z ∧ w) 6= ∅.

(b) F(x → y) ∩
x(z ∧ w) 6= ∅.

(f-5) For every x ∈ L and z ∈ F(x), there are y ∈ f(x), u ∈ f(y) and v ∈ f(z),
verifying:

(a) u ≤ x;

(b) z ≤ y ∨ u;

(c) v ≤ x ∧ y;

(d) z ∈ f(x ∧ y);

(e) x ∧ y ∧ z = 0.

(f-6) For every x ∈ L, for every y ∈ f(x), there are z ∈ F(x), u ∈ f(y), v ∈ f(z),
such that conditions (a)-(e) are satisfied.

The main result of [11] establishes that the function F can be defined in
terms of f (in Fidel’s formalism, this means that the families N

(1)
x = N◦

x are
obtained from the families Nx). Moreover:

3This notion is dual to the definition of annihilator established in [9] and used frequently
in Universal Algebra.
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Theorem 2.8 ([11], Theorems 3.7 and 3.8) Let 〈L, f,F〉 be an F1-structure.
Then:
1) for every x ∈ L, F (x) := {−x ∨ −a : a ∈ f (x)}.
2) Every F1-structure is, simply, a pair 〈L, f〉 verifying:
(F1-1) L is a Boolean algebra.
(F1-2) f : L → ℘(L) verifies, for every x ∈ L, −x ∈ f(x) ⊆ xᵀ.

The previous result is essential: the characterization of F1-structures pre-
sented in it will be the standard one to be used along this paper. Some illus-
trative examples of F1-structures following this presentation of F1-structures
are shown in the sequel. First of all, the canonical F1-structure (which will be
used later) is presented as follows:

Definition 2.9 The canonical F 1-structure is 〈B2, f〉, being B2 the stan-
dard two-valued Boolean algebra with support {0, 1}, f(0) = {1} and f(1) =
{0, 1} (by the way: F(0) = f(0), and F(1) = f(1), here).

Besides that, other examples of non-canonical F1-structures are the follow-
ing:

Example 2.10 Let B4 the “Boolean algebra with support set B4 = {a, b, 0, 1}
(see Figure 1).
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Figure 1: Hasse’s Diagram of B4

If we define f : B4 → ℘(B4) as follows: f(0) = {1}; f(a) = {b} ; f(b)= {a, 1}
and f(1)= {0, a}, then 〈B4, f〉 is an F1-structure.

We shall see other interesting examples of F1-structures along this paper.
We will conclude this section enumerating some basic properties of the F1-
structures, to be used later. Their proof is very easy.
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Proposition 2.11 For every F1-structure 〈L, f〉, for every x, y ∈ L, the fol-
lowing properties are valid:
(1) If a ∈ f(x), then −x ≤ a.
(2) If a ∈ f(x), then f(a) ∩ ↓x 6= ∅.
(3) If z ∈ f(x) and w ∈ f(y), then f (x ∧ y) ∩

y(z ∨ w) 6= ∅.
(4) If 0 ∈ f(x), then x = 1.
(5) If x = 0, then f(x) = {1}.

3 Simplification of C1-Completeness

Despite their algebraic-relational properties, let us recall that F1-structures
were defined with the aim of giving a Completeness Theorem for Cn (and
for C1, in particular). For that, M. Fidel defines in [7] some functions that
interpret the formulas of Fm in F1-structures. We will proceed in the same
way (but taking into account the new definition of F1-structures, cf. Theorem
2.8). This will allow us to obtain the simplified Completeness Theorem. This
process will be developed in the sequel.

Definition 3.1 Let 〈L, f〉 be an F1-structure. An F1-valuation into 〈L, f〉 is
a map v : Fm → L, verifying:
(a) v behaves homomorphically w. r. t. ∨, & and ⊃. That is, v(α ∨ β) =
v(α)∨v(β); v(α&β) = v(α)∧v(β) and v(α ⊃ β) = −v(α)∨v(β) = v(α) → v(β).
(b) v(α◦) ∧ v(α) ∧ v (¬α) = 0
(c) With respect to ¬, v verifies (for every α ∈ Fm):

(c.1) v(¬α) ∈ f(v(α))
(c.2) −v(¬¬α) ∈ f(v(α))

(d) Finally, v verifies −v (β◦) ∨ −v (γ◦) ∈ f(v(α◦)), for every α of the form
β ∨ γ , or β & γ, or β ⊃ γ.

If there is no risk of confussion, the F1-valuations into 〈L, f〉 will be men-
tioned as F1-valuations into L, or even as L-valuations, simply. It is easy to
see that, given an arbitrary F1-structure 〈L, f〉, any standard Boolean homo-
morphism h : Fm → L is, obviously, a F1-valuation into L (which verifies,
aditionally, v(¬α) = −v(α) for every α ∈ Fm). We shall see other (specific)
F1-valuations in the next two examples. For that, let us use the following no-
tation: ¬kα denotes ¬¬ . . .¬︸ ︷︷ ︸

k times

α, being k a natural number. In addition, the set

of literals of Fm is the set Lit:={¬kp : p ∈ V ar,with 0 ≤ k ≤ 1 }. Besides,
the notion of Boolean extension deserves to be highlighted:

Definition 3.2 For every Boolean algebra L, every subset A ⊆ Fm, every
map h : A → L and every map w : V ar → L, the Boolean extension
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determined by A := (A,w, h) is the function vA : Fm → B2 recursively
defined in this way:
(1) Given α ∈ V ar: if α ∈ A, then vA(α):=h(α). If not, then vA(α) := w(α).
(2) If α = ¬β. Then: if α ∈ A, vA(α):=h(α). If not, vA(α) := vA(¬β):=−vA(β).
(3) If α = β#γ, with # ∈ {∨,&,⊃}: if α ∈ A, vA(α):=h(α). Otherwise, vA(α)
behaves homomorphically. That is, vA(β∨γ):= vA(β)∨vA(γ) (and in a similar
way when # is & or ⊃).

It is obvious that vA is a well-defined map that extends h, but it does not
extend w. Besides that, the expression “Boolean extension” comes from the
fact that vA behaves as a Boolean homomorphism “outside A”. This notion
will help us to give the following examples:

Example 3.3 Let 〈L, f〉 be any F1-structure such that 1 ∈ f(1) and A := Lit.
We define the map h1 : A → L as h1(α) = 1 for every α ∈ A. For every
function w : Fm → L 4, the Boolean extension vB is an F1-valuation into L,
with B := (A,w, h1). In fact:
Condition (a) of Def. 3.1 is verified from (3). In addition, given α ∈ Fm,
applying (2) and (4), we get vB (α◦) = vB (¬ (α&¬α)) = −vB (α&¬α) =
−vB (α) ∨−vB (¬α). From this, consider the following cases: If α ∈ V ar, then
vB (α◦) = −h1(α) ∨ −h1(¬α) = 0. Otherwise, α /∈ V ar (and then ¬α /∈ Lit),
so, in this case, vB(¬α) = −vB(α). Moreover, vB (α◦) = −vB (α) ∨ − − vB (α)
= −vB (α) ∨ vB (α) = 1. From all these results, we have: if α ∈ V ar, then
vB (α◦) ∧ vB (α) ∧ vB (¬α) = 0 ∧ vB (α) ∧ vB (¬α) = 0. On the other hand, if
α /∈ V ar, then vB (α◦) ∧ vB (α) ∧ vB (¬α) = 1 ∧ vB (α) ∧−vB (α) = 0. From all
this, (b) is satisfied.
Condition (c) can be verified in a similar way, as follows: if α ∈ V ar, then
vB (α) = vB (¬α) = 1, and vB (¬¬α) = 0. Moreover, −vB (¬¬α) = 1, too. Thus,
{vB (¬α) ,−vB (¬¬α)} = {1} ⊆ f (vB (α)), by hypothesis. On the other hand,
if α /∈ V ar, then we have vB (¬α) = −vB (¬¬α) = −vB (α) ∈ f (vB (α)), from
condition (F1-2) of Theorem 2.8. Note finally that, for every α ∈ Fm it holds:

vB (α◦) =
{

0 if α ∈ V ar
1 otherwise

(∗)

In particular, for every α = β#γ, vB (α◦) = 1. From this, Theorem 2.8 (F1-2)
and hypothesis, we have {0, 1} ⊆ f(vB (α◦)). Besides that, (∗) implies addi-
tionally that −vB (β◦) ∨ −vB (γ◦) ⊆ {0, 1}, always. Thus, condition (d) of
Definition 3.1 is valid, too.

4In this case, the map w is not important, because V ar ⊆ A. By the way, the same
situation happens in every h1 : A → Fm such that V ar ⊆ A.
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Note that the F1-valuation of the previous example verifies a special con-
dition: for every α ∈ Fm, the value vB(α◦) only can be 0 or 1. This prop-
erty is not valid in general terms, neither for every F1-structure nor for every
F1-valuation. The following example shows such a kind of a “not so good”
F1-valuation:

Example 3.4 Let 〈B4, f〉 be the F1-structure given in Example 2.10, A := Lit

and the function h2 : A → B4 by: for every α ∈ A, h2(α) :=
{

1 if α ∈ V ar
a if α /∈ V ar

.

It can be proved (proceeding as in Example 3.3) that if C := (A,w, h2) , then
the Boolean extension vC is an F1-valuation, too (for any map w : V ar → B4).
By the way, it is easy to check that, for every α ∈ V ar, vC (α◦) = b (and, if
α /∈ V ar, then vC(α◦) = 1), as it was claimed above.

Some basic properties of the F1-valuations, to be used along this paper,
are:

Proposition 3.5 Every F1-valuation v on an arbitrary F1-structure 〈L, f〉 ver-
ifies (for every α ∈ Fm):
(1) v (α◦) = −v (α) ∨ −v (¬α)
(2) v(α) ∨ v(α◦) = 1
(3) v (α) ∨ v (¬α) = 1
(4) v (¬¬α) ≤ v (α)
(5) v (¬α) ∨ v (¬¬α) = 1
(6) v(α) = −v(α◦) ∨ −v (¬α)
(7) v (α&β) = 1 if, and only if, v (α) = 1 and v (β) = 1.
(8) If v (α) = 0, then v (¬α) = v (α◦) = 1 and v (¬¬α) = 0.
(9) If v (α) = 1, then v (α◦) = −v (¬α) .
(10) If v (¬α) = 0, then v(α) = v (¬¬α) = 1
(11) If v (¬α) = 1, then −v(α) = v(α◦).
(12) If v (α◦) = 0, then v(α) = v (¬α) = 1.
(13) If v (α◦) = 1, then −v(α) = v (¬α) .
(14) If v (¬¬α) = 1, then v(α) = 1 and v (α◦) = v((¬α)◦).
(15) If v (β◦) = v (α ⊃ β) = v (α ⊃ ¬β) = 1, then v(α) = 0.
(16) If v (α◦) = v (β◦) = 1, then v(γ◦) = 1, for every γ = α#β
(with # ∈ {∨,&,⊃}).
(17) If v (α) = v (β) = 0 and γ = α#β (with # ∈ {∨,&,⊃}), then v (γ◦) = 1.

Proof. First of all, let 〈L, f〉 be an F1-structure, v an F1-valuation into L,
and α ∈ Fm: from (c), v (α◦) = v (¬ (α&¬α)) ∈ f (v (α&¬α)) ⊆ v (α&¬α)ᵀ

(recalling Theorem 2.8). Hence, considering (a), 1 = v (α◦) ∨ v (α&¬α) =
v (α◦)∨ (v (α) ∧ v (¬α)) (∗). Now, since L is a Boolean algebra and taking into
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account (b), we have v (α◦)= − (v (α) ∧ v (¬α))= −v (α)∨−v (¬α). Moreover,
since v (α)∧v (¬α) ≤ v (α), from (∗) we have v(α)∨v(α◦) = 1. Thus, (1) and (2)
are satisfied. Besides, from (c) we have v(¬α) ∈ f (v(α)); −v(¬¬α) ∈ f (v(α)).
So, by Theorem 2.8, it holds v (α) ∨ v (¬α) = 1. In addition, from Prop.
2.11(1), it holds −v (α) ≤ −v(¬¬α). So, (3) and (4) are valid, too. Property
(5) is also valid, since v(¬¬α) ∈ f (v(¬α)) ⊆ v(¬α)ᵀ. With respect to (6), let
us note that (from (2) and (3)) v(α)∨(v(α◦) ∧ v (¬α)) = 1. This fact, together
with (b), implies v(α) = − (v(α◦) ∧ v (¬α)) = −v(α◦) ∨ −v (¬α). Note that
(7) is trivial from Definition 3.1. Supposing now that v (α) = 0, we have
v(α◦) ∧ v (¬α) = −v(α) = 1, from (6). So, v (¬α) = v (α◦) =1. And, since
−v (¬¬α) ∈ f (v (α)) = {1} (by Prop. 2.11(5)), we have that v (¬¬α) = 0.
So, (8) is valid. To prove (9), suppose that v (α) =1 and apply (1). For (10):
if v (¬α) = 0, then (by (6) again), v(α) = 1. So, from (8) and (9), v (¬¬α)
= v(α◦) = 1. Now, supposing v (¬α) = 1 and applying (6) one more time,
(11) is proved. Suppose now that v (α◦) = v (¬ (α&¬α))= 0. From (10), it
holds v (α&¬α) = 1, and then v (α) = v (¬α) = 1 (by (7)). Thus, (12) holds,
too. Item (13) is valid supposing v (α◦) =1 and applying (6). To prove (14), if
v (¬¬α) = 1, then 0 = −v (¬¬α) ∈ f (v (α)), from by Definition 3.1(c.2). But
this only can be valid if v(α) = 1 (Prop. 2.11(4)). From this, (9) and (11),
we have v (α◦) = −v(¬α) = v((¬α)◦), as it is expected. To prove (15), let us
suppose that v (β◦) = v (α ⊃ β) = v (α ⊃ ¬β) =1. From this and Definition
3.1(a) are valid: −v (α) ∨ v (β) =1 (∗) and −v (α) ∨ v (¬β) = 1 (∗∗). Now,
from (13) and (∗∗), it holds −v (α) ∨−v (β) = 1. This and (∗) together imply
−v (α) = 1. That is, v (α) = 0. To prove (16), suppose v (α◦) = v (β◦) = 1
and γ = α#β, with # ∈ {∨,∧,⊃}. Since −v (α◦) ∨ −(β◦) ∈ f (v (γ◦)) (by Def.
3.1(d)), we have 0 ∈ f (v (γ◦)) and so, v (γ◦) = 1 from Prop. 2.11(4). Suppose
now that v (α) = v (β) = 0, and let γ be as in the previous item. From (8) and
(16), we have v (γ◦) = 1. Therefore, it holds (17). This concludes the proof. �

Turning back to completeness, the F1-structures together with its F1-va-
luations define several consequence relations on Fm:

Definition 3.6 For every arbitrary F1-structure 〈L, f〉, the consequence re-
lation |=〈L,f〉

F1
is defined in the following way: Γ |=〈L,f〉

F1
α iff, for every L-

valuation v : Fm → L, v(Γ) ⊆ {1L} implies v(α) = 1L (if there is no risk
of confussion, the relation |=〈L,f〉

F1
will be indicated as |=L

F1
). In addition, the

consequence relation |=F1 determined by the class F1 is defined as usual:
Γ |=F1 α iff Γ |=L

F1
α for every F1-structure 〈L, f〉.

It is easy to see that |=F1 is a Tarskian consequence relation (cf. the for-
malization of [2]). That is, it satisfies extensiveness, idempotency and mono-
tonicity. Moreover, it verifies:



12 V. Quiroga and V. Fernández

Proposition 3.7 For every F1-valuation v on 〈L, f〉, v (α) = 1 and v (α ⊃ β)
= 1, implies v (β) =1.

Theorem 3.8 [Semantic Deduction Theorem] For every Γ ∪ {α, β} ⊆ Fm,
Γ ∪ {α} |=F1 β iff Γ |=F1 α ⊃ β.

Both results are valid because the F1-valuations are homomorphic w.r.t.
⊃, and L is a Boolean algebra.

We will prove soundness, now. For that, we need this result, previously:

Proposition 3.9 For every C1-axiom α, for every F1-valuation v : Fm → L
(with 〈L, f〉 an arbitrary F1-structure), it holds that v (α) =1.

Proof. Taking into account that v is homomorphic w.r.t. ∨, & and ⊃, we have
that v (α) = 1, for every instance α of axioms A1) - A8) of Def. 2.1. Suppose
now that α is an instance of A9) (that is, α = β∨¬β). From Def. 3.1(c.1) and
Theorem 2.8, we have v(¬β) ∈ f (v(β)) ⊆ v(β)ᵀ. Thus, v (α) = v (β ∨ ¬β) =
v(β)∨v(¬β) = 1. In addition, if α is an instance of A10) (i.e. α = ¬¬β ⊃ β) we
have that v (¬¬β ⊃ β) = −v(¬¬β)∨ v(β) = 1, by Def. 3.1(c.2) and Theorem
2.8 again. Consider now when α:= β◦ ⊃ ((γ ⊃ β) ⊃ ((γ ⊃ ¬β) ⊃ ¬γ)) (that is,
α is an instance of A11)). Applying (a) and (b) now, and recalling that L is a
Boolean algebra, we have v (α) = ((−v (β◦) ∨ v (γ)) ∧ −v (β◦&β&¬β))∨v (¬γ)
= ((−v (β◦) ∨ v (γ)) ∧ 1) ∨ v (¬γ) = −v (β◦) ∨ v (γ) ∨ v (¬γ) = 1 (from Prop.
3.5(3)).

Finally, consider α as being an instance of the C1-axioms of the form
A12)-A14) (which have the common structure α := (β◦&γ◦) ⊃ (β#γ)◦, with
# ∈ {∨,&,⊃}). Since L is a Boolean algebra, and applying Def. 3.1((a)
and (d)), and Theorem 2.8, it results: −v (β◦&γ◦) = −[v (β◦) ∧ v (γ◦)] =
= −v(β◦) ∨ −v(γ◦) ∈ f (v((β#γ)◦)) ⊆ (v((β#γ)◦))ᵀ. From all this, 1 =
−v (β◦&γ◦) ∨ v((β#γ)◦) = v ((β◦&γ◦) ⊃ (β#γ)◦). The analysis of these last
axioms concludes the proof. �

Theorem 3.10 For every α ∈ Fm, Γ `C1 α implies Γ |=F1 α.

Proof. First of all, it can be proved a weak version of this result (specifically,
`C1 α implies |=F1 α), applying Propositions 3.9 and 3.7. From this, apply
finitariness of `C1 , Propositions 2.3(1) and 3.8, and monotonicity of |=F1 . �

With respect to completeness, it will be proved by means of an “algebraic-
relational” adaptation of the well-known Lindenbaum-Tarski process. For that,
we will need the following definitions:
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Definition 3.11 Given the F1-structures 〈Li, fi〉 (i = 1, 2), and h : L1 → L2,
we say that:
• h is an F1-homomorphism if it satisfies:

− h is a Boolean homomorphism.
− For every x ∈ L1, h(f1(x)) ⊆ f2(h(x)).

• h is an F1-bimorphism if, in addition, h(f1(x)) = f2(h(x)) (for every x ∈ L1).
• Finally, h is called an F1-isomorphism iff it is a bijective bimorphism.

Referring to the previous definitions, this easy result (which is presented
without proof) will be very useful later.

Proposition 3.12 Let 〈L, f〉 be an F1-structure. If, for every Boolean isomor-
phism h : L → L′, we define the map f′ : L′ → ℘(L′) by: f′ (h (x)) := h (f (x)),
then the system 〈L′, f′〉 is an F1-structure which is isomorphic (in the sense of
Def. 3.11) to 〈L, f〉.

In addition, we have this obvious result:

Proposition 3.13 If 〈L1, f1〉 and 〈L2, f2〉 are F1-isomorphic, Then Γ |=L1
F1

α

iff Γ |=L2
F1

α.

Besides that, the equivalence relation that will determine the Lindenbaum-
structure is the same as the one used in Classical Logic (from now on we will be
focused on non-trivial theories Γ; that is, sets Γ whose set of C1-consequences
is different from the own set Fm):

Proposition 3.14 For every Γ ⊆ Fm, the relation 'Γ⊆ Fm × Fm defined
by:

α 'Γ β iff Γ `C1 α ⊃ β and Γ `C1 β ⊃ α

is an equivalence relation. In addition, it is compatible with respect to ∨, &
and ⊃.

Proof. Use results (2), (3), (4) and (5) of Proposition 2.3. �

notation 3.15 When Γ = ∅ we will denote 'Γ simply by '. The equivalence
class of any formula α ∈ Fm will be denoted by ‖α‖Γ. In addition, the quotient
set determined by 'Γ will be denoted by Fm/'Γ.

Let us note that 'Γ is not compatible with ¬, in general terms. For instance
(taking Γ = ∅ and α ∈ V ar) it is obvious that α ' α ∨ α, because we are
dealing with formulas without negation. Now, considering the F1-valuation of
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Example 3.3 it is easy to see that 6|=F1 ¬α ⊃ ¬(α ∨ α). So, by soundness,
6`C1 ¬α ⊃ ¬(α ∨ α). Therefore, ¬α 6' ¬(α ∨ α), if α ∈ V ar.

Besides that, defining naturally (by Prop. 3.14) the operations ∨, ∧ and
→, we have that we can define an order relation in Fm/'Γ:

Proposition 3.16 For every Γ ⊆ Fm, the relation ≤Γ defined on Fm/'Γ as
follows: ‖α‖Γ ≤Γ ‖β‖Γ iff ‖α‖Γ ∧ ‖β‖Γ = ‖α‖Γ (iff ‖α‖Γ ∨ ‖β‖Γ = ‖β‖Γ) is a
partial order. Moreover, ≤Γ can be defined in an alternative way by:

‖α‖Γ ≤Γ ‖β‖Γ iff Γ `C1 α ⊃ β

Finally, with this definition, ( Fm/ 'Γ ,∨,∧,→, 1Γ) is a classical implicative
lattice (CIL) with greatest element 1Γ (cf. [4])5, where 1Γ (the greatest element
of Fm/'Γ) verifies: 1Γ= ‖α‖ iff Γ `C1 α.

Proof. It is a straightforward adaptation of the “weak version” (when Γ =
∅), proved in [7]. �

In the next result, we will show that Fm/ 'Γ can be “extended” to a
Boolean algebra, in a non-standard way:

Lemma 3.17 Let Fm/ 'Γ , with Γ non-trivial. If we define the element 0Γ:=
‖α&α◦&¬α‖Γ (being α ∈ Fm), and the map − : Fm/ 'Γ −→ Fm/ 'Γ by:
−‖α‖Γ := ‖α◦&¬α‖Γ, then ( Fm/ 'Γ ,∨,∧,−, 0Γ, 1Γ) is a Boolean algebra.

Proof. From Proposition 3.16, We only need to prove that:
(a) 0Γ is a well-defined 0-ary operation, and it is the first element of Fm/ 'Γ :
indeed, for every α, β ∈ Fm, α &α◦&¬α 'Γ β &β◦ &¬β, by Prop. 2.3(6). In
addition, for any α ∈ Fm, 0Γ = ‖α‖Γ ∧ ‖α◦‖Γ ∧ ¬‖α‖Γ ≤ ‖β‖Γ.
(b) The map − is well defined: suppose ‖α‖Γ =‖β‖Γ: from (a), ‖β◦&¬β‖Γ

= 0Γ ∨ ‖β◦&¬β‖Γ (‖α‖Γ ∧ ‖α◦&¬α‖Γ) ∨ ‖β◦&¬β‖Γ= (‖β‖Γ ∧ ‖α◦&¬α‖Γ) ∨
‖β◦&¬β‖Γ. Since ‖β‖Γ ∨‖β◦&¬β‖Γ = (‖β‖Γ ∨ ‖β◦‖Γ)∧ (‖β‖Γ ∨ ‖¬β‖Γ) = 1Γ

(by Prop. 2.3(7) and A9), we have ‖β◦&¬β‖Γ = 1Γ∧(‖α◦&¬α‖Γ ∨ ‖β◦&¬β‖Γ)
= ‖α◦&¬α‖Γ ∨ ‖β◦&¬β‖Γ, which implies ‖α◦&¬α‖Γ ≤ ‖β◦&¬β‖Γ. The other
inequality is similar.
(c) For every α ∈ Fm, ‖α‖Γ ∨ − ‖α‖Γ = 1Γ: given α, we have ‖α ∨ α◦‖ = 1Γ

and ‖α ∨ ¬α‖Γ = 1Γ, by A9) and Prop. 2.3(7). Hence 6, ‖α‖Γ ∨ − ‖α‖Γ =
‖α‖Γ ∨ (‖α◦‖Γ ∧ ‖¬α‖Γ) = 1Γ.

5Roughly speaking, a CIL L is the {∨;∧;→}-reduct of a Boolean algebra. Therefore, it
have greatest element 1L = x → x, with x ∈ L.

6Even when it is an obvious warning, we prevent to the reader that − ‖α‖Γ is not ‖¬α‖Γ,
usually.
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(d) For every α ∈ Fm, ‖α‖Γ ∧ − ‖α‖Γ = 0Γ. It is obvious, from the Definition
of 0Γ and of − ‖α‖Γ. This concludes the proof. �

Corollary 3.18 For every α, β ∈ Fm/ 'Γ , it holds:
(1) ‖α‖Γ → ‖β‖Γ = −‖α‖Γ ∨ ‖β‖Γ .
(2) −‖α‖Γ = ‖α‖Γ → 0Γ.

The following additional property of Fm/ 'Γ will be useful along all this
paper:

Proposition 3.19 For every set Γ ∪ {α} ⊆ Fm/ 'Γ , −‖α◦‖Γ = ‖α&¬α‖Γ.

Proof. Consider Γ ∪ {α} ⊆ Fm: since ¬ (α◦) = ¬¬ (α&¬α) `C1 α&¬α
(by A10) of Def. 2.1), we have α◦ ∨ ¬α◦ `C1 α◦ ∨ (α&¬α), applying Prop.
2.3(4). Therefore, 1Γ = ‖α◦ ∨ (α&¬α)‖Γ = ‖α◦‖Γ ∨ ‖α&¬α‖Γ. Moreover, 0Γ

= ‖α&α◦&¬α‖Γ = ‖α◦‖Γ ∧ ‖α&¬α‖Γ. So, − ‖α◦‖Γ = ‖α&¬α‖Γ, again by
uniqueness of the Boolean complements. �

Definition 3.20 The F1-Lindenbaum structure relative to Γ (Γ ⊆ Fm)
is the system LΓ := 〈 Fm/ 'Γ , f'Γ〉, where 〈 Fm/ 'Γ ,∨,∧,−, 0Γ, 1Γ〉 is the
Boolean algebra determined in Lemma 3.17, and (for any ‖α‖Γ ∈ Fm/'Γ),
f'Γ (‖α‖Γ) := {‖λ‖Γ : Γ,¬λ `1 α} .

Theorem 3.21 The system LΓ is an F1-structure.

Proof. Taking into account Theorem 2.8, we only need to prove:
(a) f' : Fm/ 'Γ → ℘ ( Fm/ 'Γ ) is well-defined: assuming α 'Γ β, let
us prove that f'Γ (‖α‖Γ) = f'Γ (‖β‖Γ), with f'Γ given as above. If ‖λ‖Γ ∈
f'Γ (‖α‖Γ), then ‖¬λ‖Γ ≤ ‖α‖Γ = ‖β‖Γ. So, Γ `C1 ¬λ ⊃ β (by Prop. 3.16 ).
That is, Γ,¬λ `C1 β. Then, by definition of f'Γ , ‖λ‖Γ ∈ f'Γ (‖β‖Γ). The other
inclusion is similar.
(b) for every α ∈ Fm, − ‖α‖Γ ∈ f'Γ (‖α‖Γ): from Prop. 2.3(8), it is valid
Γ `C1 ¬ (α◦&¬α) ⊃ α. So, ‖¬ (α◦&¬α)‖Γ ≤ ‖α‖Γ, by Prop. 3.16. Therefore
− ‖α‖Γ = ‖α◦&¬α‖Γ ∈ f'Γ (‖α‖Γ).
(c) f'Γ (‖α‖Γ) ⊆ ‖α‖Γ

ᵀ: suppose ‖λ‖Γ ∈ f'Γ (‖α‖Γ) (that is, ‖¬λ‖Γ ≤ ‖α‖Γ,
from Prop. 3.16). Now, 1Γ = ‖λ ∨ ¬λ‖Γ = ‖λ‖Γ ∨ ‖¬λ‖Γ ≤ ‖λ‖Γ ∨ ‖α‖Γ (by
A9)). Thus, ‖λ‖Γ ∨ ‖α‖Γ = 1Γ, which means ‖λ‖Γ ∈ ‖α‖ᵀ

Γ. �

Proposition 3.22 For every Γ ⊆ Fm, the map qΓ : Fm → Fm/ 'Γ defined
by qΓ(α) := ‖α‖Γ is an F1-valuation into the F1-structure LΓ (which will be
called the canonical L/Γ-valuation).
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Proof. Let qΓ be defined as above. Taking into account Proposition 3.16, it
is clear that qΓ satisfies (a) of Def. 3.1. On the other hand, condition (b) is
satisfied by the definition of 0Γ, included in Lemma 3.17.
Let us prove condition (c), now. That is (for every α ∈ Fm/ 'Γ ):
(c.1) qΓ(¬α) ∈ f(qΓ(α)): this is valid from axiom A10) and Definition 3.20.
(c.2) −(qΓ(¬¬α)) ∈ fΓ(qΓ(α)): we have ¬ ((¬¬α)◦ &¬ (¬¬α)) `C1 ¬¬α and
¬¬α `C1 α, from Prop. 2.3(8) and A10). So, Γ `C1 ¬ ((¬¬α)◦ &¬ (¬¬α)) ⊃ α.
Thus, by the definition of f'Γ , we get ‖(¬¬α)◦ &¬ (¬¬α)‖Γ ∈ f'Γ (‖α‖Γ) =
f'Γ (qΓ(α)). Besides that, by definition of −, it holds −qΓ(¬¬α)=−‖¬¬α‖Γ =
‖(¬¬α)◦ &¬ (¬¬α)‖Γ ∈ f'Γ (qΓ(α)) too, as it was expected.
Finally, let us prove (d): −qΓ (β◦) ∨ −qΓ (γ◦) ∈ f'Γ(qΓ((β#γ)◦)), for every
{β, γ} ⊆ Fm/ 'Γ (with # ∈ {∨,&,⊃}): using Prop. 2.3(8) again (and
applying axioms A12)-A14)), we have ¬ ((β◦&γ◦)◦ &¬(β◦&γ◦)) `C1 β◦&γ◦

and β◦&γ◦ `C1 (β#γ)◦. Thus, Γ `C1 ¬ ((β◦&γ◦)◦ ∧ ¬(β◦&γ◦)) ⊃ (β#γ)◦,
by Prop. 2.3(3). So, it holds ‖(β◦&γ◦)◦ ∧ ¬(β◦&γ◦)‖Γ ∈ f'Γ (‖(β#γ)◦‖Γ) =
f'Γ (qΓ((β#γ)◦)), from Definition 3.20. In addition, we have − ‖β◦&γ◦‖Γ =
‖(β◦&γ◦)◦ ∧ ¬(β◦&γ◦)‖Γ, by Lemma 3.17. Summarizing all this, −qΓ(β◦&γ◦)
belongs to f'Γ (qΓ((β#γ)◦)). Thus, qΓ is an F1-valuation. �

Corollary 3.23 For every Γ ⊆ Fm, for every α ∈ Fm, it holds that qΓ (α) =
1Γ if, and only if, Γ `C1 α.

Proof. Immeditate, from Propositions 3.16 and 3.22. �

Corollary 3.24 For every Γ, qΓ (Γ) ⊆ {1Γ} .

Proof. By the previous corollary and extensiveness of `C1 . �

Finally, we get completeness:

Theorem 3.25 For every Γ ∪ {α} ⊆ Fm, Γ |=F1 α implies Γ `C1 α.

Proof. By contrapositive: consider Γ ∪ {α} ⊆ Fm such that Γ 6`C1 α. It is
possible to define the F1-structure LΓ, according Definition 3.20. Moreover,
the map qΓ defined following Proposition 3.22 is an F1-valuation, verifying
qΓ (Γ) ⊆ {1Γ} and qΓ (α) 6= 1Γ (by Corollaries 3.24 and 3.23). Hence, Γ 6|=LΓ

F1
α,

and then Γ 6|=F1 α. �

4 Decidability of C1, simplified

As it was previously remarked, the definition of Fn-structures (besides its use
in completeness) had as main motivation the proof of decidability of the calculi
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Cn. In this context we say that a given logic is decidable if and only if it set of
valid formulas (the set of C1-theorems, in this case) is decidable. So, we will not
work with arbitrary theories Γ, but we will consider that Γ = ∅, simply. Turn-
ing back to Fidel’s proof of decidability of C1, it is possible to simplify it, too.
For this, we will adapt Birkhoff’s Theorem for subdirectly irreducible Boolean
algebras. This result will be proved from the notion of F1-homomorphism (al-
ready given), together with the definitions of F1-substructure and F1-product,
that will be provided along this section.

Definition 4.1 An F1-structure 〈S, g〉 is F 1-substructure of 〈L, f〉 iff:
(1) S is a Boolean subalgebra of L.
(2) For every x ∈ S, g(x) ⊆ f(x).

It is worth to note here that, if the definition given above were expressed
according the formalism of Model Theory (as it was done in [3] for the case of
the logic mbC), it would not correspond to the standard notion of substructure:
in the model-theoretic definition of substructure it is necessary that g(x) =
f(x)∩S. Actually, Def. 4.1 is referred to the notion known as weak substructure
in the literature 7. This weakening will be necessary to relate any F1-structure
with its saturated version, to be defined later.

Proposition 4.2 For every injective F1-homomorphism h between 〈L1, f1〉
and 〈L2, f2〉, for every Boolean subalgebra S of L1, if we define (for every x ∈ S)
g (h (x)) := h (f1 (x)) ∩ h (S), then the system 〈h(S), g〉 is an F1-substructure
of 〈L2, f2〉.

Proof. Considering the hypotheses above, define g (h (x)) := h (f1 (x))∩h (S).
Obviously it holds g : h(S) → ℘(h(S)), being h(S) a Boolean subalgebra of
L2. In addition, for every x ∈ S, g (h (x)) ⊆ f2 (h (x)) ∩ h (S), from Def. 4.1.
Besides that, −x ∈ f1 (x) ∩ S and then (since h is Boolean homomorphism):
−h (x) = h (−x) ∈ h (f1 (x)) ∩ h (S) = g (h (x)). From Def. 4.1, 〈h(S), g〉 is a
substructure of 〈L2, f2〉. �

Definition 4.3 The F 1-product of the family {(Li, fi)}i∈I of F1-structures
is the following system:

Lπ :=

〈∏
i∈I

Li, fπ

〉
(where, for every x ∈

∏
i∈I

Li, fπ(x) :=
∏
i∈I

fi (πi(x))).

7By the way, the mentioned paper is the first one, to our knowledge, that distinguish the
two model-teorethic notions compared here, in the context of F -structures.
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Proposition 4.4 The F1-product of F1-structures is also an F1-structure. In
addition, for every i ∈ I, the projection map πi :

∏
i∈I

Li → Li is a surjective

F1-bimorphism.

Proof. Given a family {〈Li, fi〉}i∈I of F1-structures and considering that
∏
i∈I

Li

is the Boolean product of {Li}i∈I , it is easy to see that Lπ satisfies the con-
ditions established in Theorem 2.8. Besides that, given any i ∈ I, by Def.

4.3, πi(fπ(x))= πi

(∏
i∈I

fi(πi(x))

)
= fi(πi(x)). From this, πi is a surjective

F1-bimorphism, since πi is a Boolean epimorphism, for every i ∈ I. �

We will prove now some basic properties of the F1-valuations (recall Defini-
tion 3.1), related to all the notions given above. By the way, the items (a), (b),
(c) and (d) that will be mentioned all along this section are always referred to
the mentioned definition:

Proposition 4.5 Let h be an F1-homomorphism from 〈L1, f1〉 to 〈L2, f2〉. For
every F1-valuation v : Fm → L1, the composition h ◦ v is an F1-valuation into
L2.

Proof. From the hypothesis above indicated, we have that h ◦ v behaves
homomorphically w.r.t. ∨, & and ⊃, verifying (a), consequently. Condition
(b) is valid because h is a Boolean homomorphism. Suppose α ∈ Fm, now.
Since v satisfies (c), {v(¬α),−v(¬¬α)} ⊆ f1 (v(α)). In addition, from Defi-
nition 3.11, it holds h (f1 (v(α))) ⊆ f2 ((h ◦ v) (α)). From all this, (h ◦ v) (¬α)
= h (v (¬α)) ∈ f2 ((h ◦ v) (α)). Moreover, it is valid that − (h ◦ v) (¬¬α) =
h (−v (¬¬α)) ∈ f2 ((h ◦ v) (α)). That is, h ◦ v verifies (c). Finally, con-
sider β, γ ∈ Fm and # ∈ {∨,&,⊃}. Since v verifies Definition 3.1 (d), it
holds −v (β◦) ∨ −v (γ◦) ∈ f1 (v((β#γ)◦)). Besides, since h (f1 (v((β#γ)◦))) ⊆
f2 (h (v((β#γ)◦))), we have h (−v (β◦) ∨ −v (γ◦)) ∈ f2 (h (v((β#γ)◦))). Then,
− (h ◦ v) (β◦) ∨ − (h ◦ v) (γ◦) ∈ f2 ((h ◦ v) ((β#γ)◦)) (since h and v are homo-
morphic w.r.t. ∨, & and ⊃). Thus, h ◦ v verifies (d), too. �

From this result it is easy to demonstrate:

Proposition 4.6 Let 〈S, g〉 be an F1-substructure of 〈L, f〉. Every F1-valuation
into S is an F1-valuation into L.

Proof. Consider 〈L, f〉 and 〈S, g〉 as defined above. Let v be an arbritrary
F1-valuation into S , and let α ∈ Fm: from Def. 3.1 (c) and Def. 4.1, we
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have {v(¬α),−v(¬¬α)} ⊆ g (v(α)) ⊆ f (v(α)). Now, let {α, β} be any pair of
formulas. By (d), it holds: −v (α◦)∨−v (β◦) ∈ g (v((α#β)◦)) ⊆ f (v((α#β)◦)).
The rest of the conditions are obviously valid. �

From the previous result and Def. 3.6 it follows easily:

Proposition 4.7 If 〈S, g〉 is an F1-substructure of 〈L, f〉, then |=L
F1

α implies
|=S

F1
α.

Concerning the relation between F1-products and F1-valuations note that,
by its own definition, the “product of F1-structures” induces a product of val-
uations, as we shall see in the sequel.

Definition 4.8 Let {〈Li, fi〉}i∈I be a family of F1-structures and let {vi}i∈I a
family of F1-valuations vi : Fm → Li. We define the map vπ : Fm →

∏
i∈I

Li by

vπ(α):= (vi(α))i∈I , for every α ∈ Fm.

Proposition 4.9 Let {〈Li, fi〉}i∈I be a family of F1-structures and consider
the F1-product Lπ. Then, it holds:
(1) The map vπ : Fm →

∏
i∈I

Li is an F1-valuation into Lπ.

(2) If v : Fm →
∏
i∈I

Li is any F1-valuation into Lπ, then πi ◦ v : Fm → Li is

an F1-valuation into Li, for every i ∈ I.

Proof. Item (1) follows straightforward, since the operations on the Boolean
algebra

∏
i∈I

Li are defined componentwise. On the other hand, every projection

map πi :
∏
i∈I

Li → Li is an F1-homomorphism, cf. Prop. 4.4. Applying Prop.

4.5 now, it follows (2). �

Proposition 4.10 Let {〈Li, fi〉}i∈I be a family of F1-structures and let Lπ

be its F1-product associated. For every α ∈ Fm, it holds: if |=Li
F1

α for every
i ∈ I, then |=Lπ

F1
α.

Proof. Let {〈Li, fi〉 : i ∈ I} be a family of F1-structures and let Lπ be its
product associated where, for every x ∈

∏
i∈I

Li, fπ (x) =
∏
i∈I

fi (πi (x)) (from Def.

4.3). Let α be in Fm such that, for every i ∈ I, it holds |=Li
1 α, and let
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v : Fm →
∏
i∈I

Li be any F1-valuation into Lπ. From Prop. 4.9(2), we have

that (for every i ∈ I) πi ◦ v is an F1-valuation into Li. So, for every i ∈ I it
holds πi (v (α)) = (πi ◦ v) (α)= 1i, by our hypothesis. Thus, v (α) = (1i)i∈I =
1π. From this, |=Lπ

F1
α. �

We will define now a special kind of F1-structures, essential to our proof of
decidability:

Definition 4.11 For every Boolean algebra L, the saturated F1-structure
determined by L is the F1-structure of the form: 〈L, fL〉, where fL (x) :=
{y ∈ L : x ∨ y = 1} = xᵀ.

It is easy to see that 〈L, fL〉 is an F1-structure, indeed. It is also obvious
that every Boolean algebra L can determine several F1-structures, depending of
the choice of the map f involved. However, L can determine only one saturated
F1-structure. The following example shows this:

Example 4.12 The systems 〈B2, f〉 and
〈
B2, fB2

〉
are all the possible F1-

structures that can be defined on B2, where:

f (0) = {1} fB2 (0) = {1}
f (1) = {0} fB2 (1) = {0, 1}

In addition,
〈
B2, fB2

〉
is the saturated F1-structure determined by B2 (see

Definition 4.11). By the way, it is the canonical F1-structure, already presented
in Example 2.9.

Example 4.13 The following is an example of a non-saturated F1-structure.
Let us consider the eight-element Boolean algebra B8 (see Figure 2):

According to that figure, the complement of every element of B8 is indicated
below:

x 0 a b c d e f 1
−x 1 e d f b a c 0

Now, defining for every x ∈ B8:

f (0) = {1} f (d) = {b, e, 1} f (a) = {e} f (e) = {a, d, f}
f (b) = {d, 1} f (f) = {c, d} f (c) = {f} f (1) = {0, d}

it is not difficult to check that 〈B8, f〉 is an F1-structure, indeed. Moreover, it
is obviously a non-saturated one.

The following result is obvious.
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Figure 2: Hasse’s Diagram of B8

Proposition 4.14 For every F1-structure 〈L, f〉 it holds:
(1) 〈L, f〉 is substructure of the saturated structure 〈L, fL〉.
(2) If S is a subalgebra of L, then 〈S, fS〉 is an F1-substructure of 〈L, fL〉.

On the other hand, to symbolize the saturated F1-structure of the Boolean

product of a family of algebras, we write Lπ =

〈∏
i∈I

Li, fπ

〉
.

Proposition 4.15 Let {〈Li, fLi〉 : i ∈ I} be a family of F1-structures, and let
Lπ be its F1-product. Then Lπ = Lπ iff, for every i ∈ I, fLi = fLi .

Proof. It follows from Def. 4.3 and this fact: for every x = (xi)i∈I ∈
∏
i∈I

Li, it

holds that xᵀ =
∏
i∈I

(πi(x))ᵀ =
∏
i∈I

(xi)ᵀ. �

All the previous definitions and results allow us to obtain the following
Representation Theorem for F1-structures:

Theorem 4.16 Every F1-structure 〈L, f〉 is F1-isomorphic (in the sense of Def.
3.11) to a substructure of the saturated F1-structure determined by the Boolean
product of a family {Li}i∈I , where Li = B2, for every i ∈ I.

Proof. Given 〈L,f〉, it is well-known that L is representable as a subdirect
product of a family {Li}i∈I , where Li = B2, for every i ∈ I (see [1]). So, there
is L′ verifying:
(a) There exists an (algebraic) isomorphism h : L → L′.
(b) L′ is subalgebra of

∏
i∈I

Li.

Now, from Prop. 3.12 and (a), 〈L′, f′〉 is an F1-structure, where f′ (h (x)) :=
h (f (x)) , for every x ∈ L. Moreover, h is an F1-isomorphism. Besides that,



22 V. Quiroga and V. Fernández

from Prop. 4.14(1), 〈L′, f′〉 is an F1-substructure of
〈
L′, fL′

〉
, the saturated F1-

structure of L′, which, in turn, is a substructure of the F1-saturated product
Lπ (apply Prop. 4.14(2) and (b), now). This completes the proof. �

Theorem 4.17 For every α ∈ Fm the following conditions are equivalent:
(i) |=F1 α

(ii) |=〈L,fL〉
F1

α for every saturated F1-structure 〈L, fL〉.

(iii) |=〈B2,fB2
〉

F1
α.

Proof. It is obvious that (i) implies (ii) and (ii) implies (iii). To prove that

(iii) implies (i), let us suppose |=〈B2,f〉
F1

α, and let us consider any F1-structure
〈L, f〉. Then, by Theorem 4.16, there is an F1-isomorphism h : L → L′, being

〈L′, f′〉 an F1-substructure of a F1-saturated structure Lπ =

〈∏
i∈I

Li, fπ

〉
where,

for every i ∈ I, Li = B2. Now, according Prop. 4.15, Lπ is the product of the
saturated F1-structures

〈
Li, fLi

〉
. From this, our hypothesis and Prop. 4.10,

we have |=Lπ
F1

α. Hence, from Prop. 4.7, it holds |=〈L′,f′〉
F1

α. Thus, by Prop.

3.13, |=〈L,f〉
F1

α. Since 〈L, f〉 is arbitrary, |=F1 α. �

Corollary 4.18 The logic C1 is decidable.

Proof. The algebra B2 is finite. Besides, for every α ∈ Fm, there is a
finite number, mα, of F1-valuations from Fm to 〈B2, fB2〉, necessary to test if

|=〈B2,fB2
〉

F1
α. Actually, mα is bounded by 2kα , being kα the cardinal of the set

of all the subformulas of α. �

As it was pointed out in the previous result, the number mα of F1-valuations
needed to test the validity of a given formula α ∈ Fm is finite. However, it
is not clear exactly how to obtain mα, and which are the expressions that
determine its obtention. This is an interesting problem, to be discussed later.

5 F1-structures and Quasi-matrices, compared

In [6] it was proposed a semantics for the Cn-logics (and, in particular, for C1)
based on the so-called quasi-matrices. It was one of the more “algorithmic”
approaches for this family of logics 8 and it was, a priori, different from the

8Of course, neither F -structures nor quasi-matrices are the only semantic approaches
for the Cn-logics. It deserve to be mentioned the Possible-Translation Semantics, Tableaux
Methods and Kripke-style semantics, among others. We refer the interested reader to [2], for
a very updated survey of this an other related topics.
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F1-structures-based semantics. We will show in the sequel that, even with
different motivations, the quasi-matrix semantics and the semantics focused on
the canonical F1-structure 〈B2, fB2〉 are, essentially, the same. We will begin
this analysis with a simple proof of some properties of F1-valuations that are
specific for 〈B2, fB2〉 (which will be called simply as canonical F1-valuations,
from now on):

Proposition 5.1 Every canonical F1-valuation v verifies (for any α, β ∈ Fm):
(1) v (α ∨ β) = 1 if, and only if, v (α) = 1 or v (β) = 1.
(2) v (α ⊃ β) = 1 if, and only if, v (α) = 0 or v (β) = 1.
(3) If γ = α#β, with # ∈ {∨,&,⊃}, and v (γ◦) = 0, then v (α) = 1 or v (β) = 1.

Proof. Consider any F1-valuation v on 〈B2, fB2〉. From Def. 3.1(a), (1)
and (2) are trivial in this structure. To prove (3), suppose that γ = α#β
(# ∈ {∨,∧,⊃}) with v (γ◦) =0. Then, applying Definition 3.1 one more time,
we have −v (α◦) ∨ −v (β◦) = −v (α◦&β◦) ∈ fB2 (v (γ◦)) = fB2 (0) = {1} (by
Proposition 2.11(5)). From (1), −v (α◦) = 1 or −v (β◦) = 1. That is, v (α◦) = 0
or v (β◦) = 0. So, from Proposition 3.5(12), v (α) = v (¬α) = 1 or v (β) =
v (¬β)= 1. �

Definition 5.2 ([6], Definition 5) A QM1-valuation is a map q : Fm → {0, 1}
verifying:
QM1): v(α) = 0 implies v(¬α) = 1
QM2): v(¬¬α) = 1 implies v(α) = 1
QM3): v(β◦) = v(α ⊃ β) = v(α ⊃ ¬β) = 1 implies v(α) = 0
QM4): v(α ⊃ β) = 1 if and only if v(α) = 0 or v(β) = 1
QM5): v(α&β) = 1 if and only if v(α) = v(β) = 1.
QM6): v(α ∨ β) = 1 if and only if v(α) = 1 or v(β) = 1.
QM7): v(α◦) = v(β◦) = 1 implies v ((α#β)◦) = 1 (with # ∈ {∨,&,⊃}).

Definition 5.3 The consequence relation |=QM1⊆ ℘(Fm)×Fm is defined
as follows: Γ |=QM1 α iff, for every QM1-valuation q such that q(Γ) ⊆ {1}, it
holds that q(α) = 1.

It is worth noting that, given α, the set of all the QM1-valuations needed
to check the validity of α according the definition of |=QM1 can be spreaded
out in a kind of truth-table for α (which we will mention as the “quasi-truth
table for α”). Besides this comment, the main result of this section is:

Proposition 5.4 For every map v : Fm → {0, 1}, are equivalent:
i) v is a canonical F1-valuation.
ii) v is a QM1-valuation.
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Proof. Note first that every F1-valuation v to 〈B2, fB2〉 satisfies all the condi-
tions QM1)-QM7) of Def. 5.2, as they form part of Prop. 3.5 and Prop. 5.1.
On the other hand, if v is a QM1-valuation, then it verifies Def. 3.1 (a) from
QM4)-QM6) (and since we are focused on B2). With respect to (b): if v(α◦)
= 0 or v(α) = 0, then it is satisfied. If not, then v(α◦) = v(α) = 1. Note now
that v(α ⊃ α) = 1, because of QM4). From all this and QM3), v(α ⊃ ¬α) = 0,
and so v(¬α) = 0 (by QM4) again). Condition (b) is also valid, consequently.
To prove c.1): suppose that v(α) = 0. From QM1), v(¬α) = 1 ∈ fB2(v(α)).
And, if v(α) = 1, fB2(v(α)) = {0, 1}. So, v(¬α) ∈ fB2(v(α)) always. To prove
c.2): suppose first that v(α) = 1. In this case, −v(¬¬α) ∈ fB2(α) = {0, 1},
trivially. If, on the contrary, v(α) =0, then v(¬¬α) = 0, from QM2), and
so −v(¬¬α)= 1 ∈ fB2(¬α), too. Let us prove (d) finally, considering γ =
α#β, with # any binary connective. This condition is trivially valid if v(γ◦)
= 1, since in this case fB2(γ

◦) = {0, 1}. If not, then v(α◦) = 0 or v(β◦) =
0, because QM7). Then −v(α◦) ∨ −v(β◦) = 1 ∈ fB2(γ

◦) always, proving (d),
consequently. Summarizing, v verifies every condition of Def. 3.1. �

Corollary 5.5 For every Γ ∪ {α} ⊆ Fm, Γ |=〈B2,fB2
〉

F1
α iff Γ |=QM1 α.

It will be noted in addition that, once the F1-valuations into 〈B2, fB2〉 have
been identified as being QM1-valuations, the problem of the “number mα”, of
F1-valuations needed to check if `C1 α (commented at the end of Section 4), is
reduced to the number or QM1-lines of the quasi-matrix in the “quasi-truth-
table” of α. This question is very interesting, as we said. Moreover, it is related
with the existence of a set of generators of all the canonical F1-valuations (or,
alternatively, the QM1-valuations).

6 Historical Remarks

This section intends to provide a little comparison between the F1-structures
and the early works about semantic models for C1, as it was done with the
case of quasi-matrices in the previous section. In addition, we will compare the
former presentation of F1-semantics of Fidel with the one shown in this paper.
First of all, we would wish to mention a (somewhat forgotten) work of A. Sette
(see [14]): it is one of the first attempts of provide an algebraic interpretation
of a da Costa logic (specifically, of Cω). With this aim, it is defined there
the notion of Cω-algebra as being a system (L,∨,∧,→,′ ) wherein (L,∨,∧,→)
is an RPL (that is, it is a relatively pseudo-complemented lattice, cf. [13]),
and additionally ′ : L → L verifies a ∨ a′ = 1 and a ≤ a′′. Note that this
algebraic structure is cleary related with some of the requirements established
in Def. 2.4, indebted to M. Fidel, useful for every Cn, with 1 ≤ n ≤ ω.
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However, even when the F -structures directly associated with Cω (that is, Fω-
structures, cf. [12]) are based on RPL (as in the case of Cω-algebras), the
essential difference of both approaches is that the element a′ in Fω-structures
does not need to be unique. This last fact is strongly related with the fact that
F -structures (in a general way) define algebraic-relational semantics, and not
exclusively algebraic ones, as it was already commented. Indeed, algebraic-
relational semantics seems to be more natural to the Cn-logics, because they
are not algebraizable, cf. [8].

On the other hand, we already have seen the strong connection between
quasi-matrices and F -structures, focusing our analysis on the formalism for F1-
structures presented here. This study suggests a similar comparison between
the original formalism and definitions of F -structures given in [7] and the ones
here presented. At this respect, it is possible to see that:
• The formalism given here does not modify the essence of the F1-structures
in the way that they were originally defined.
• However, the F1-valuations used here are not the same as the used in [7]. For
a better comparison of them, let us define “Fidel F1-valuations” (the original
definition indebted to Fidel, but with the formalism used here):

Definition 6.1 Given 〈L, f〉, a Fidel F 1-valuation is a map v : Fm → L,
verifying:
(a∗) For every δ ∈ V ar:

a.1∗) v (¬δ) ∈ f(v (δ)), v (¬¬δ) ∈ f(v (¬δ)), v (δ◦) ∈ F(v (δ)), v (δ◦) ∈
f(v (δ&¬δ)), v (¬(δ◦)) ∈ f(v (δ◦)), v (¬¬(δ◦)) ∈ f(v (¬(δ◦))),

a.2∗) v(δ &¬δ) = v(δ) ∧ v(¬δ); v(δ) ∧ v(¬δ) ∧ v(δ◦) = 0; v (δ◦) ≤ v (¬δ) ∨
v (¬¬δ) ; v (¬¬δ) ≤ v (δ) ; v (¬δ◦) ≤ v (δ) ∧ v (¬δ).
(b∗) For every α, β ∈ Fm, v(α &β) = v(α) ∧ v(β), v(α ∨ β) = v(α) ∨ v(β),
v(α ⊃ β) = v(α) ⇒ v(β);
(c∗) For every α, β ∈ Fm, v ((α ∨ β)◦) ∈ F(v (α ∨ β)), v(α◦) ∧ v(β◦) ≤
v ((α ∨ β)◦) , v ((α ⊃ β)◦) ∈ F(v(α ⊃ β)) , v(α◦) ∧ v(β◦) ≤ v ((α ⊃ β)◦);
(d∗) For every α of the form β ∨γ or β ⊃ γ, it holds v(α◦) ∈ F(v(α)), v(¬α) ∈
f(v (α)), v(¬¬α) ∈ f(v (¬α)), v(α◦) ∈ f(v (α&¬α)), v (¬ (α◦)) ∈ f(v (α◦)),
v (¬¬ (α◦)) ∈ f(v (¬ (α◦))), and these elements satisfy additionally:

d.i∗) v (¬¬α) ≤ v (α);
d.ii∗) v (α◦) ≤ v (¬α) ∨ v (¬¬α);
d.iii)∗ v (¬α◦) ≤ v (α) ∧ v (¬α);
d.iv)∗ v(α) ∧ v(¬α) ∧ v(α◦) = 0.

(e∗) Finally, if α is of the form ¬β or β & γ, then v(¬α) ∈ f(v(α)), v(α◦) ∈
F(v(α)), v(¬¬α) ∈ f(v (¬α)), v(α◦) ∈ f(v (α&¬α)), v (¬ (α◦)) ∈ f(v (α◦)),
v (¬¬ (α◦)) ∈ f(v (¬ (α◦))), validating additionally conditions (i)-(iv) of (d∗).



26 V. Quiroga and V. Fernández

It should be clear that Def. 3.1 is more operative than Def. 6.1. Moreover,
it can be proved that they are not exactly the same: more specifically, both
definitions coincide in the case of saturated F1-structures, but they differ in the
case of not saturated ones (see [10] for a detailed comparison).

Finally, we will remark that the way in which are defined the Lindenbaum
F1-structures in [7] is diferent to the given in Def. 3.20 (we are interested only
in the case when Γ = ∅). Even when the support sets in both structures is
the same (i.e. the Lindenbaum Boolean algebra defined on Fm), the main
difference between both approaches lays on the definition of the function f.
More specifically:

Definition 6.2 The Lindenbaum-Fidel F 1-structure (or, shorter, the LF-
F1-structure) is the F1-structure of the form: 〈 Fm/ 'Γ , f∗'〉, where f∗'(‖α‖)
= {‖¬λ‖) : ‖α‖ = ‖λ‖} .

Of course, Fidel’s original definition of Lindenbaum F1-structures included
the map F∗' (see [7], page 34). Indeed, F∗'(‖α‖) = {‖λ◦‖ : ‖α‖ = ‖λ‖}. We have
already seen, however, that it is not essential. Despite this latter mentioned
fact, the structures 〈 Fm/ 'Γ , f∗'〉 and 〈 Fm/ 'Γ , f'〉 (given in Def. 3.20)
are not (necessarily) the same. In a similar way to the case of F1-valuations,
a compared analyisis of LF-F1-structures and the ones given here (discussion
that lies outside the scope of this paper) can be found in [10].

Summarizing, all these differences between both treatments of F1-structures
justify, under our point of view, the main results and the general approach of
this paper.

7 Final Remarks

From all the definitions and results shown above, it should be clear that F1-
structures, as developed here, are not only understood as a “better formalism”
than the presented originally. Moreover, they not only allow us to prove com-
pleteness and decidability in a simpler way: the definitions of F1-valuations
and Lindenbaum F1-structures given here differ from the given in [7], and in
a certain sense both notions should not to be treated as the same (even when
they are equally useful to prove completeness and decidability).

In addition, if we work with F1-structures as here, some interesting ques-
tions can be posed in a clearer way (w.r.t. [7]). For instance, the definition
and study of a category of F1-structures seems to be natural, here (with respect
to this, see [10] and [12] for a more extensive treatment of that category and
other related ones). Other topic that deserves a deep analysis is the character-
ization of the minimum generator set that determines the F1-valuations (or,
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equivalently, the QM1-valuations taking into account the results of Section 5).
Finally, F1-structures deserve a good, deep, model-theoretic treatment, such as
the done in [3] for the logic mbC. As we said above, all these problems could
be solved (or, at least, analyzed) with the help of the simple presentation given
in this paper.
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