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Abstract

In 2018, A. V. Figallo and M. A. Jiménez presented a Priestley-style topolo-
gical duality type for the M3−lattices (see [4]). In this work we continue with
the study and describe the principal and Boolean congruences, through the open
and closed of the associated Priestley space. Among other results, we prove that
both coincide and are associated with ideals generated by the Boolean elements
of the algebra, being able to precisely determine what these elements are.
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Introduction

The class of the M3-lattices was defined by Figallo, at the suggestion of A. Monteiro,
in [1] and his consideration was motivated by the implementation of certain trivalent
switching circuits.

In the aforementioned work, with the aim of finding the simple algebras and
proving that the variety was semisimple, Figallo introduced the notion of n-ideal (prime)
of an M3−lattice L, as an ideal (prime) N of L that verifies: if x ∈ N , then ∼ x ∈ N ,
or equivalently, x ∈ N implies ∇x ∈ N .

In a later paper ([3]), A. V. Figallo defined: (I) x|y = x∧4(∼ (x∨∇y)∨ ∼ (y∨ ∼ x))
and proved that if 〈L,∧,∨,∼,4, 0〉 is an M3−lattice with greatest element 1, then
〈L,∧,∨, 0, 1〉 is a Brouwer algebra.

This fact allowed him to characterize the congruences using operation (I), and the
notion of n-ideal that he had introduced. Demonstrating that the variety is semisimple
and that the only simple algebra is 〈T,∧,∨,∼,4, 0〉, where T is the chain with three
elements {0, 1/2, 1} with 0 ≤ 1/2 ≤ 1 and the operations ∼ and 4 are defined in the
following table:
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x ∼x 4x
0 0 0

1/2 1 0
1 1/2 1

He also proved that 〈T,∧,∨,−,∇, 0, 1〉 is a trivalent  Lukasiewicz algebra in the
sense of [5], where operations ∇ and − are defined as follows:

(i) ∇x = ¬¬x,

(ii) −x = (¬¬x → x) ∧ (x → ¬x).

being

(iii) x → y = 4∼(x ∨ ∼1) ∨ y,

(iv) ¬x = 4∼(∇x ∨ ∼1)

From this result, taking into account a theorem of representation that Figallo had
demonstrated for these algebras, he was able to assure that if ∇ and − are indicated
in (i) and (ii) respectively, and 〈L,∧,∨,∼,4, 0〉 is an M3−lattice with last element 1,
then 〈L,∧,∨,−,∇, 0, 1〉 is centered trivalent  Lukasiewicz algebra, with center c = ∼1.

In this paper we provide a description of the principal congruences in the bounded
M3−lattices, based on the characterization of the congruency lattice we had previously
obtained, via Priestly topological duality type, for this class of algebras (see [4]).

This article has been organized as follows. In Section 2 we introduce the defini-
tion and properties of M3−lattices given by Figallo and we briefly describe the duality
previosly obtained for bounded M3−lattices. In Section 3, we show another character-
ization of the M3−congruency lattice in terms of the open subsets of their associated
topological space. In Sections 4 and 5, applying the results obtained in the previous sec-
tion, we describe the principal and Boolean congruences, through the open and closed
of the associated Priestley space. Among other results, we prove that both coincide
and are associated to ideals generated by the Boolean elements of algebra, being able
to precisely determine what those elements are.

1 Preliminaries

Let’s remember that an M3−lattice is an algebra 〈L,∧,∨,∼,4, 0〉 type (2, 2, 1, 1, 0)
such that the reduct 〈L,∧,∨, 0〉 is a distributive lattice with least element 0 and it
satisfies the following identities:

(M1) 4(x ∧ ∼x) = 0,
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(M2) ∼∼x = x,

(M3) x = 4x ∨ ∼∇x, where ∇x = x ∨ ∼x,

(M4) ∼4x ∨4x = 4x,

(M5) 4∇x = ∇x,

(M6) 4(x ∨ y) = 4x ∨4y,

(M7) ∇(x ∧ y) = ∇x ∧∇y.

If 〈L,∧,∨,∼,4, 0〉 is an M3−lattice such that the reduct 〈L,∧,∨〉 is a distributive
lattice with greatest element, we say that is a bounded M3−lattice and we denote with
M3 the variety of the bounded M3−lattices.

In [6] we present an extension of Priestley duality for the bounded distributive
lattices, in the case of M3−lattices. To do this we introduce the category M3 of
M3−spaces and M3−functions, where a M3−space is a triple (X, τ,≤) such that:

(MP1) (X, τ,≤) is a Priestley space.

(MP2) (X,≤) is the cardinal sum of a family of chains, each of which has exactly two
elements,

(MP3) for each U ∈ D(X) (where D(X) denote the bounded distributive lattice of the
open, closed and decreasing subsets of X) the following properties are verified:

(a) (MXU ] is an open and closed subset in X,

(b) [mXU)\MXU is an open and closed subset in X, where MXU = max X∩U ,
mXU = min X∩U and max X (min X) denote the set of maximal (minimal)
elements of X.

On the other hand, an M3-function of an M3-space (X, τ,≤) in an
M3-space (X ′, τ ′,≤′), is a increasing continuous function h : X −→ X ′ such that for all
V ∈ D(X ′) are verified:

(MF1) (MXh−1(V )] = h−1((MX′V ]),

(MF2) [mXh−1(V )) \MXh−1(V ) = h−1([mX′V ) \MX′V ).

Then we proved:
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(DP1) If 〈L,∧,∨,4,∼, 0, 1〉 is an M3−lattice with last element, then the set Ip(L), of
the primes ideals of L, ordered by the inclusion relation and endowed with the
topology τ having as a subbasis the sets

(A1) σL(a) = {I ∈ Ip(L) : a 6∈ I} and Ip(L) \ σL(a), for each a ∈ L,

is an M3-space, called the M3-space associated with L. Also the application
σL : L −→ D(Ip(L)) defined as in (A1), is an M3-isomorphism.

(DP2) If (X, τ,≤) is an M3-space, and for each U ⊆ X, we define:

(D) 4∗U = (MXU ],

(N) ¬U = [mXU) \MXU ,

(B) ∇∗U = U ∪ ¬U ,

then 〈D(X),∩,∪,4∗,¬, ∅, X〉 is a bounded M3-lattice.

Then we demonstrate, in the usual way, that the category M3 is dually equivalent
to the category M3 of M3-lattices and M3-homorphisms.

One of the important facts of Priestley duality is that if L is a bounded distributive
lattice, there is a biunivocal correspondence between the congruences of L and the
closed subsets of Ip(L), more precisely H. A. Priestley ([6], [7], [8]) proved that if Y is
a closed subset of Ip(L), then

(A3) Θ(Y ) = {(a, b) ∈ L× L : σL(a) ∩ Y = σL(b) ∩ Y },

is a congruence over L. Conversely, if θ is a congruence of L and q : L −→ L/θ is the
canonical epimorphism, then

(A4) Y = {q−1(I) : I ∈ Ip(L/θ)},

is a closed subset of Ip(L) such that Θ(Y ) = θ and the correspondence Y −→ Θ(Y ),
establishes an isomorphism between C(Ip(L)), the lattice of the closed subsets of L,
and the dual of the lattice Con(L) of the congruences on L.

The notion of 4−involutive set of an M3-space associated X, as subsets Y of X such
that 4∗Y = Y , allowed us to characterize the lattice of M3−congruences as follows:

Theorem 1.1 Let L ∈ M3 and Ip(L) be the M3−space associated to L. Then the lat-
tice C4(Ip(L)) of the all closed and 4−involutive subsets of Ip(L), is isomorphic to the
dual of the lattice ConM3(L) of M3−congruences, and the isomorphism is established
by the function ΘC4 defined by the same prescription as that given in (A3).
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It is worth mentioning here that the 4−involutive sets also admit the following
characterization:

(A5) Let X be an M3−space and Y be a non-empty subset of X. Then the following
conditions are equivalent:

(i) Y is 4−involutive subset,

(ii) Y is increasing and decreasing subset,

(iii) Y is a cardinal sum of a family of chains, each of which has exactly two elements.

Before the end of the section we will set some notations necessary for the following. If
K is a class of algebra and A ∈ K, we indicate with ConK(A) the set of congruences on
A, or also K−congruences in order to highlight the class of algebras we are considering.
In case this is not necessary we will simply write Con(A). Also, in general, if a ∈ A
and θ is a congruence on A, with |a|θ, we denote the equivalence class of a. Also if
a, b ∈ A, with Θ(a, b) we denote the principal congruence generated by (a, b), that is,
the least congruence such that a and b are in the same equivalence class.

On the other hand, we designate with L, the class of the bounded distributive
lattices (or (0, 1)− distributive lattices) and we denote by P(X) the family of subsets
of a set X.

2 Another characterization of the M3−congruences

lattice

The duality described in Section 1 allowed us to characterize the lattices of the con-
gruences of an M3−lattice, in term of certain closed subsets of its associated M3−space,
more precisely the closed and 4−involutive subsets.

Below we prove that this can also be done with open and 4−involutive subsets of
the associated with an M3−space.

Lemma 2.1 Let L ∈ M3 and Ip(L) be the M3−space associated with L, then for all
U, V ∈ P(Ip(L)), 4∗(U \ V ) = 4∗U \ 4∗V .

Proof. Let x ∈ 4∗(U \ V ), then there is y ∈ max Ip(L) ∩ (U \ V ), such that x ≤ y.
Then it is clear that there is y ∈ max Ip(L) ∩ U such that x ≤ y and consequently
x ∈ 4∗U . If x ∈ 4∗V , we would have that there is z ∈ max Ip(L) ∩ V such that
x ≤ z, from where analyzing the different cases that arise: (a) x < y and x < z,
(b) x < y and x = z, (c) x = y and x < z, (d) x = y and x = z, we would arrive to
contradictions. So x 6∈ 4∗V and thus x ∈ 4∗U \ 4∗V .



6 A. V. Figallo, M. A. Jiménez and I. Pascual

For the other inclusion, let’s consider (1) x ∈ 4∗U \ 4∗V . Then there’s y ∈
max Ip(L) ∩ U such that x ≤ y. If y ∈ V , it would verify that y ∈ max Ip(L) ∩ V ,
which would imply that x ∈ 4∗V that contradicts (1). Then y ∈ (U \ V )∩max Ip(L),
and therefore x ∈ 4∗(U \ V ) holds. �

Corollary 2.2 Let L ∈ M3 and Ip(L) be the M3−space associated with L. Then, G
is an open and 4−involutive subset of Ip(L), if and only if Ip(L) \ G is a closed and
4−involutive subset of Ip(L).

Proof. Let G be an open and 4−involutive subset of Ip(L), then Ip(L)\G is a closed
subset of Ip(L). Furthermore, by Lemma 2.1, we have that 4∗(Ip(L)\G) = (4∗Ip(L))\
(4∗G) and since Ip(L) and G are 4−involutive sets, we get 4∗(Ip(L)\G) = Ip(L)\G,
from which we conclude that Ip(L)\G is 4−involutive subset of Ip(L). The reciprocal
is analogous. �

Lemma 2.3 Let L ∈ M3 and Ip(L) be the M3−space associated with L. If Y is a
closed subset of Ip(L) and a, b ∈ L, the following conditions are equivalent:

(i) σL(a) ∩ Y = σL(b) ∩ Y ,

(ii) (σL(b)∆ σL(a)) ∩ Y = ∅,

(iii) (σL(b)∆ σL(a)) ⊆ Ip(L) \ Y , where σL(b)∆, σL(a) is the symmetrical
difference of σL(b) with σL(a).

Proof. It is routine. �

Theorem 2.4 Let L ∈ M3 and Ip(L) be the M3−space associated with L. Then the
lattice O4(Ip(L)) of open and 4−involutive subsets of Ip(L) is isomorphic to the lattice
ConM3(L) of M3−congruences on L, and the isomorphism is established by the function
ΘO4 defined by:

(A3’) ΘO4(G) = {(a, b) ∈ L× L : (σL(b)∆ σL(a)) ⊆ G}.

Proof. It is a immediate consequence of Lemma 2.3, Corollary 2.2 and
Theorem 1.1. �
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3 Principal M3−congruences

In this section we characterize closed and4−involutive subsets and open and4−involutive
subsets of M3−space associated with an M3−lattice, which correspond to principal
M3−congruences under the duality.

With this purpose, we will start by introducing the following results that are
necessary for the determination of the principal congruences.

Proposition 3.1 Let L ∈ M3 and let Ip(L) be the Priestley space associated with L.
Let I ⊆ L be an ideal and σ(I) = {Ip ∈ Ip(L) : I ⊆ Ip}. Then the following properties
are fulfilled:

(i) σ(I) is closed and increasing subset of Ip(L).

(ii) θ(I) = Θ(σ(I)), where θ(I) = {(a, b) ∈ L2 : there exists i ∈ I such that a ∨ i =
b ∨ i} is the congruence associated with the ideal I, and Θ(σ(I)), the congruence
defined as in (A3).

Proof. (i): It is easy to see that σ(I) is an increasing set in Ip(L). On the other
hand, if I ′p ∈ Ip(L) \ σ(I), there is a ∈ L such that (1) a ∈ I and a /∈ I ′p, therefore
I ′p ∈ σL(a), it also verifies that σL(a) ⊆ Ip(L) \ σ(I). In fact, if I ′′p ∈ σL(a), then a /∈ I ′′p
and from (1), I ′′p /∈ σ(I). Therefore σ(I) is a closed subset of Ip(L).

(ii): Let us consider I ⊂ L an ideal and a, b ∈ L such that (a, b) ∈ θ(I). Then there
is (1) i ∈ I such that (2) a ∨ i = b ∨ i. Let Ip ∈ σ(I) ∩ σL(a), then (3) I ⊆ Ip and
a /∈ Ip, of this last we see that a ∨ i /∈ Ip. Taking into account (2), it is verified that
b ∨ i /∈ Ip from where by (1) and (3) b /∈ Ip. So that’s Ip ∈ σ(L) ∩ σL(b). The other
inclusion is proved in an analogous way, therefore σL(a) ∩ σ(I) = σL(b) ∩ σ(I), and so
it is demonstrated that (a, b) ∈ Θ(σ(I). Then θ(I) ⊆ Θ(σ(I)).

For the other inclusion let us consider a, b ∈ L such that (4) (a, b) ∈ Θ(σ(I)) and
suppose that (a, b) /∈ θ(I). Then for all i ∈ I, a ∨ i 6= b ∨ i which means that for all
i ∈ I, a ∨ i 6≤ b ∨ i, or for all i ∈ I, b ∨ i 6≤ a ∨ i.

Suppose that for all i ∈ I, a ∨ i 6≤ b ∨ i, then for all i ∈ I, a 6≤ b ∨ i, and then
a /∈ I(I ∪{b}), being I(I ∪{b}) the ideal generated by I ∪{b}. Then, as a consequence
of the Birkhoff-Stone Theorem, there is Ip ∈ Ip(L) such that I(I∪{b}) ⊆ Ip and a /∈ Ip.
Therefore Ip ∈ σ(I) ∩ σL(a) and Ip /∈ σL(b), which implies Ip /∈ σL(b) ∩ σ(I). We have
so σL(a) ∩ σ(I) 6= σL(b) ∩ σ(I), from where (a, b) /∈ Θ(σ(I)), which contradicts (4).
If we assume that for all i ∈ I, b ∨ i 6≤ a ∨ i, we get in an analogous form a similar
contradiction, so (a, b) ∈ θ(I). �

Proposition 3.2 Let L ∈ L, Ip(L) be the Priestley space associated with L and Y ⊆
Ip(L), then the following conditions are equivalent:
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(i) Y is a closed and increasing subset of Ip(L),

(ii) if Ip /∈ Y , then there exists U ∈ D(Ip(L)) such that Ip ∈ U and U ∩ Y = ∅,

(iii) if Ip /∈ Y , there exists a ∈ L such that a /∈ Ip and a ∈ Zp for all Zp ∈ Y ,

(iv) there is an ideal I of L such that σ(I) = Y , and, in addition, I =
⋂

Q∈Y

Q.

Proof. (i) ⇒ (ii): Let Y be a closed and increasing subset of Ip(L), such that
Ip /∈ Y . Then as Y is increasing, for all Zp ∈ Y , Zp 6⊆ Ip, which implies, because it is a
Priestley space, that for each Zp ∈ Y , there is UZ ∈ D(X) such that Zp /∈ UZ and (1)
Ip ∈ UZ . From the above we have to (2) Y ⊆

⋃
Zp∈Y

(Ip(L) \ UZ).

On the other hand since Y is a closed subset of compact space Ip(L) then Y is compact,

and therefore from (2), there are Z1, Z2, . . . , Zn such that (3) Y ⊆ Ip(L) \
n⋂

i=1

UZi
. So if

U =
n⋂

i=1

UZi
, by (1) and (3), we have that Ip ∈ U and U ∩ Y = ∅.

(ii) ⇒ (iii): Let Ip /∈ Y , then for (ii), there is U = σL(a) ∈ D(Ip(L)) such that Ip ∈ U
and U ∩ Y = ∅. Then there is a ∈ L such that a /∈ Ip and a ∈ Zp, for all Zp ∈ Y .

(iii) ⇒ (iv): It is clear that I =
⋂

Q∈Y

Q is an ideal of L, such that Q ∈ σ(I) for all

Q ∈ Y , which implies that Y ⊆ σ(I). In order to prove the other inclusion, let (1)
Ip /∈ Y , then for (iii), there is a ∈ L such that (2) a /∈ Ip and a ∈ Q for all Q ∈ Y ,
therefore (3) a ∈ I. From (2) and (3), I 6⊆ Ip, resulting (4) Ip /∈ σ(I). Finally by (1)
and (4) we have to Ip \ Y ⊆ Ip(L) \ σ(I), and therefore σ(I) ⊆ Y .

(iv) ⇒ (i): It is verified by part (i) of Proposition 3.1. �

In order to characterize the principal congruences on an M3-lattice through duality,
we had to use the notion of convex set, whose definition we give below.

Definition 3.3 Let (X,≤) be an order set. A subset Y of X is convex, if x, y ∈ Y and
x ≤ z ≤ y, implies z ∈ Y .

Remark 3.4 If L ∈ M3 and Ip(L) is its associated M3−space, then all subset Y of
Ip(L) is convex, for being the space, a cardinal sum of chains which has exactly two
elements.

Proposition 3.5 If R is an open, closed and convex set in a Priestley space X and
D(X) is the set of open, closed and decreasing subsets of X, then there are U, V ∈ D(X),
such that U ⊆ V and R = V \ U .
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Proof. It is a consequence of the following results, whose demonstration we expose
in each case:

(i) (R] = {x ∈ X : there is y ∈ R such that x ≤ y} is a closed set in X:
Let x ∈ X \ (R], then x 6≤ y for all y ∈ R. Since X is disconnected in the order,

for each y ∈ R there is Uxy ∈ D(X) such that y ∈ Ux,y and x 6∈ Uxy. Consequently,

R ⊆
⋃

y∈R

Ux,y and since X is compact, there are y1, y2, . . . , yn ∈ R, such that R ⊆
n⋃

i=1

Uxyi
.

Let U =
n⋃

i=1

Uxyi
, then V = X\U is an open and increasing set, x ∈ V and (1) R∩V = ∅.

Suppose that (R]∩V 6= ∅, then there is z ∈ X such that z ∈ (R] and z ∈ V . Therefore
there is s ∈ R such that z ≤ s and for being V increasing set, s ∈ V . Then s ∈ R ∩ V ,
which contradicts (1), therefore V ⊆ X \ (R]. Hence, for each x ∈ X \ (R], there is V ,
open set in X, such that x ∈ V and V ⊆ X \ (R], which implies that X \ (R] is an open
set in X and so (R] is a closed set in X.

(ii) (R] \R, is decreasing:
Let (1) x ∈ (R] \ R and y ∈ X such that y ≤ x. Then there is z ∈ R such that

x ≤ z and consequently y ≤ x ≤ z with z ∈ R, which implies that y ∈ (R]. If y ∈ R,
x ∈ R because R is compact, which contradicts (1). So y ∈ (R] \R.

(iii) There is U ∈ D(X) such that (a) (R] \R ⊆ U and (b) R ∩ U = ∅:
Let x ∈ R and y ∈ (R] \ R. As (R] \ R is decreasing we have to x 6≤ y. Then for

every y ∈ (R] \ R there is Uxy ∈ D(X) such that y ∈ Uxy and x 6∈ Uxy, which implies
that (1) (R] \ R ⊆

⋃
y∈R

Uxy. For being R and (R] closed set of X, it is verified that

(2) (R] \ R is compact and therefore of (1) and (2), there are y1, y2, . . . , yn ∈ R, such

that (R] \R ⊆
n⋃

i=1

Uxyi
. It is clear that for every x ∈ R, there is Ux =

n⋃
i=1

Uxyi
∈ D(X),

such that (3) (R] \R ⊆ Ux y x ∈ X \ Ux. It turns out that R ⊆
⋃

x∈R

(X \ Ux) and as R

is compact, there are x1, x2, . . . , xm ∈ R such that R ⊆
m⋃

i=1

(X \ Uxi
) or the equivalent

(4) R ⊆ X \ (
m⋂

i=1

Uxi
). If U =

m⋂
i=1

Uxi
∈ D(X), by (3) and (4), (a) and (b) hold.

(iv) V = R ∪ U ∈ D(X) and V \ U = R, where U is the set whose existence
assures (iii): Since R is an open and closed set, we can say that V = R ∪ U is an open
and closed subset of X. We will prove that V is decreasing. Let x ∈ V and y ≤ x. We
distinguish two cases: (a) x ∈ U or (b) x ∈ R.

If (a) occurs, it is clear that y ∈ V , for being U decreasing. If (b) is verified, we have
that y ∈ (R]. Then if y ∈ R turns out that y ∈ V . If it were y 6∈ R, it is verified that
y ∈ (R] \ R, from which by (iii), y ∈ U and therefore y ∈ V , with which it is demon-
strated that V ∈ D(X). Besides, from (b) of (iii), it is immediate that V \ U = R. �
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In [3], Figallo proved that if L is an M3−lattice, the set K(L) = {4x : x ∈ L},
of the invariant element of L, is a generalized Boole algebra. In this fact, if L has as
its greatest element 1, it is verified that 1 ∈ K(L), and therefore [0, 1] = {x ∈ K(L) :
0 ≤ x ≤ 1}, that coincides with K(L), is a Boole algebra, such that if x ∈ K(L), then
x = 4∼(x ∨ ∼1) is its Boolean complement.

Proposition 3.6 Let L ∈ M3, Ip(L) be its M3−associated space and σL : L −→
D(Ip(L)) given as in (A1) of the Section 1. Then the restriction of the function σL to
K(L) is a Boolean isomorphism and for all d ∈ K(L), Ip(L) \ σL(d) = σL(d), where d
is the Boolean complement in K(L).

Proof. To prove that the restriction of σL to K(L) is a Boolean isomorphism we only
need to prove that for all x ∈ K(L), σL(x) ∈ K(D(Ip(L)) and σL(x) = σL(x), where

σL(x) is the Boolean complement of σL(x) in K(D(Ip(L)).
First of all note that if x ∈ K(L), then 4x = x and since the application

σL : L −→ D(Ip(L)) is an M3−isomorphism, we have to σL(x) = 4∗σL(x), result-
ing in this way that σL(x) ∈ K(D(Ip(L)).

Consequently, since the restriction σL|K(L) : K(L) −→ K(D(Ip(L))) is a bounded
lattices homomorphism between Boole algebras, then σL|K(L) also preserves the com-
plement, that is, σL(x) = σL(4∼(x∨∼1)) = 4∗¬(σL(x)∪¬Ip(L)) = σL(x). Therefore
σL|K(L) is a Boolean isomorphism.

Let us see now that Ip(L) \ σL(d) = σL(d), for all d ∈ K(L). Let P ∈ Ip(L) \ σL(d)
with d ∈ K(L). If d ∈ P , since d ∈ P , then d ∨ d = 1 ∈ P . Therefore P would not
be an proper ideal, which contradicts that P is a prime ideal. Then P ∈ σL(d). Let
us prove the other inclusion. Let P ∈ σL(d), then d /∈ P . Since 0 = d ∧ d ∈ P , and
P is prime ideal, it is verified that d ∈ P . Hence P /∈ σL(d), which is equivalent to
P ∈ Ip(L) \ σL(d)). �

Remark 3.7 If L is an M3−lattice and Θ(a, b) is a principal congruence, we can
assume that a ≤ b, otherwise we consider a ∧ b and a ∨ b, because
Θ(a, b) = Θ(a ∧ b, a ∨ b).

Lemma 3.8 Let L ∈ M3, Ip(L) be the associated M3−space with L and a, b ∈ L such
that a ≤ b. If Y is a closed and 4−involutive subset of Ip(L), then the following
conditions are equivalent:

(i) (a, b) ∈ ΘC4(Y ),

(ii) (σL(b)∆ σL(a)) ∩ Y = ∅,
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(iii) (σL(b) \ σL(a)) ∩ Y = ∅,

(iv) (a, b) ∈ ΘO4(Ip(L) \ Y ).

Proof. It is a direct consequence of Lemma 2.3 and Theorem 2.4, because taking
into account that σL : L −→ D(X(L)) is a lattice isomorphism, if a ≤ b, we have that
σL(a) ⊆ σL(b), hence σL(b)∆ σL(a) = σL(b) \ σL(a). �

Definition 3.9 Let X be an M3−space and let C4(X) be the family of all closed and
4−involutive subsets of X. We say that Y ∈ C4(X) is maximally disjointed with a
subset R of X in C4(X), if Y ∩R = ∅ and for all Z ∈ C4(X) such that Z ∩R = ∅, is
verified that Z ⊆ Y .

Lemma 3.10 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. For every
a, b ∈ L such that a ≤ b, if Y ∈ C4(Ip(L)) the following conditions are equivalent:

(i) ΘC4(Y ) = Θ(a, b),

(ii) Y is maximally disjointed with the open and closed set σL(b)\σL(a) in C4(Ip(L)).

Proof. (i) ⇒ (ii): Let Y ∈ C4(Ip(L)) such that ΘC4(Y ) = Θ(a, b) with a ≤ b and
let F ∈ C4(Ip(L)) be disjointed with σL(b) \ σL(a). From Lemma 3.8, we know that
Y ∩ (σL(b) \ σL(a)) = ∅ and that (a, b) ∈ ΘC4(F ). Consequently ΘC4(Y ) ⊆ ΘC4(F )
and as ΘC4 is an antiisomorphism, it is verified that F ⊆ Y . Thus (ii) holds.

(ii) ⇒ (i): We consider that Y is maximal in the family of subsets of Ip(L) closed,
4−volutive and disjointed with σL(b) \ σL(a). Then for Lemma 3.8, ΘC4(Y ) is an
M3−congruence such that (a, b) ∈ ΘC4(Y ) and therefore Θ(a, b) ⊆ ΘC4(Y ). Be-
sides, for Theorem 1.1, there is a closed and 4−involutive subset F of Ip(L) such that
Θ(a, b) = ΘC4(F ). Therefore we have that ΘC4(F ) ⊆ ΘC4(Y ). From this last asser-
tion, as ΘC4 is an antiisomorphism, it turns out that (1) Y ⊆ F . On the other hand
as (a, b) ∈ ΘC4(F ), it is verified that (2) F ∩ (σL(b) \ σL(a)) = ∅. Hence, by (1), (2)
and the maximality of Y , we have that Y = F and consequently Θ(a, b) = ΘC4(Y ). �

Proposition 3.11 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. If
Y ∈ C4(Ip(L)), then the following conditions are equivalent:

(i) ΘC4(Y ) is a principal M3−congruence on L,

(ii) there is an open and closed subset R of Ip(L), such that Y is maximally disjointed
with R in C4(Ip(L)).
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Proof. (i) ⇒ (ii): It follows from Lemma 3.10, where R = σL(b) \ σL(a).
(ii) ⇒ (i): Let Y ∈ C4(Ip(L)) such that there exists R ⊆ Ip(L) which verifies:

(a) R is an open and closet set,

(b) Y ∩R = ∅,

(c) if F ∈ C4(Ip(L)) and F ∩R = ∅, then F ⊆ Y .

From (a), Proposition 3.5 and Observation 3.4, there are U, V ∈ D(Ip(L)) such that
U ⊆ V and V \ U = R. Then there are a, b ∈ L with a ≤ b such that U = σL(a)
and V = σL(b). Besides, by (b) and Lemma 3.8, we obtain (1) (a, b) ∈ ΘC4(Y ).
Let (2) ϑ ∈ ConM3(L) such that (3) (a, b) ∈ ϑ. Then, for Theorem 1.1, there is
F ∈ C4(Ip(L)) such that ϑ = ΘC4(F ), which implies (a, b) ∈ ΘC4(F ) and conse-
quently, for Lemma 3.8, (σL(b) \ σL(a)) ∩ F = ∅. From the latter results, by (c), that
F ⊆ Y , and since ΘC4 is an antiisomorphism we have that (4) ΘC4(Y ) ⊆ ΘC4(F ) = ϑ.
Then, from (1), (2), (3) and (4), we infer that ΘC4(Y ) = ΘC4(a, b) and therefore it is
a principal M3−congruence. �

Proposition 3.12 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G) = Θ(a, b),

(ii) G is least element of O4(Ip(L)), in the sense of inclusion, which contains
σL(b) \ σL(a).

Proof. (i) ⇒ (ii): Let G ∈ O4(Ip(L)) such that ΘO4(G) = Θ(a, b). Since
(a, b) ∈ ΘO4(G), then by Lemma 3.8, it is verified that (1) (σL(b) \ σL(a)) ⊆ G.

On the other hand as ΘO4(G) = ΘC4(Ip(L) \ G), then ΘC4(Ip(L) \ G) = Θ(a, b)
and by Lemma 3.10, F = Ip(L) \ G is maximally disjointed with σL(b) \ σL(a) in
C4(Ip(L)).

Let G′ ∈ O4(Ip(L)) such that σL(b)\σL(a) ⊆ G′, then (2) (σL(b)\σL(a))∩ (Ip(L)\
G′) = ∅ and (3) F ′ = Ip(L) \G′ ∈ C4(Ip(L)).

Hence, from (2) and (3), for the maximality of F , it turns out that Ip(L) \ G′ ⊆
Ip(L) \G and consequently G ⊆ G′. Therefore, by (1), G is the least element of subset
of O4(Ip(L)), in the sense of inclusion, which contains σL(b) \ σL(a).

(ii) ⇒ (i): From the hypothesis (σL(b) \ σL(a)) ⊆ G, by Lemma 3.8, we have that
(a, b) ∈ ΘO4(G). On the other hand, if ϑ ∈ ConM3(L) is such that (a, b) ∈ ϑ , then
by Theorem 2.4, there is G′ ∈ O4(Ip(L)) such that ϑ = ΘO4(G′) and by Lemma 3.8,
σL(b) \ σL(a) ⊆ G′.
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From the latter, taking into account that G is the least set which contains σL(b) \
σL(a), we infer that G ⊆ G′ and consequently, as ΘO4 is an isomorphism, we have that
ΘO4(G) ⊆ ΘO4(G′).

This way allow us to conclude that ΘO4(G) is the least M3−congruence which con-
tains the par (a, b) and therefore ΘO4(G) = Θ(a, b). �

Proposition 3.13 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G) = Θ(a, b),

(ii) G =
⋃

Ci∩(V \U) 6=∅
Ci, where Ci is a maximal chain in Ip(L), V = σL(b) and U =

σL(a).

Proof. (i) ⇒ (ii): Let ΘO4(G) = Θ(a, b), then by Proposition 3.12, G is the least
subset of O4(Ip(L)), in the sense of inclusion, which contains σL(b) \ σL(a) and, as G
is an 4−involutive set of Ip(L), by (A5), G =

⋃
i∈I

Ci, with Ci maximal chains (chains

of two-element), for all i ∈ I.
On the other hand, since σL(b) \ σL(a) ⊆ G, there is a set I0 ⊆ I such that

Ci ∩ (σL(b) \ σL(a)) 6= ∅, for all i ∈ I0, and
⋃

i∈I0

Ci ⊆ G.

Suppose now, that
⋃

i∈I0

Ci ⊂ G, then there is (1) P ∈ G and j /∈ I0, such that the

maximal chain Cj ⊆ G verifies that (2) P ∈ Cj and Cj ∩ (σL(b) \ σL(a)) = ∅. As Ip(L)
is a space T2, all finite set is closed, consequently Cj is closed and also 4−involutive
set.

Then Ip(L) \ Cj is an open and 4−involutive subset of Ip(L) such that σL(b) \
σL(a) ⊆ Ip(L)\Cj. By the minimality of G, we get that G ⊆ Ip(L)\Cj, or the equivalent
(3) Cj ⊆ Ip(L) \G. Therefore, from (2) and (3) we conclude that P ∈ Ip(L) \G, which
contradicts (1). So G =

⋃
Ci∩(V \U) 6=∅

Ci, where Ci is a maximal chain in Ip(L), V = σL(b)

and U = σL(a).

(ii)⇒ (i): Assume that G =
⋃

Ci∩(U\V ) 6=∅
Ci, with Ci maximal chain in Ip(L), being

V = σL(b) and U = σL(a). Let us prove that V \ U ⊆ G.
Let P ∈ V \ U . Since the space is the cardinal sum of chains of two-elements, we

infer that P ∈ CP , being CP the chain of two-elements that contains to P . Therefore,
P ∈ CP ∩ (V \ U) ⊆

⋃
Ci∩(V \U) 6=∅

Ci = G.

Let G′ ∈ O4(Ip(L)) such that (1) V \ U ⊆ G′. Then we have that G ⊆ G′.
Indeed, suppose that R ∈ G =

⋃
Ci∩(V \U) 6=∅

Ci, then there is i0 such that R ∈ Ci0 and
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(2) Ci0 ∩ (V \U) 6= ∅. Then, by (1) and (2), Ci0 ∩G′ 6= ∅ and, as G′ is an 4−involutive
set, we have that Ci0 ⊆ G′, which implies that R ∈ G′.

We have thus proved that G is the least 4−involutive set such that σL(b) \σL(a) ⊆
G. Hence, by Proposición 3.12, we conclude that ΘO4(G) = Θ(a, b). �

Proposition 3.14 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G) is a principal M3−congruence on L.

(ii) there is an open and closed subset R of Ip(L), such that G =
⋃

Ci∩R 6=∅
Ci, with Ci

maximal chain in Ip(L).

Proof. (i) ⇒ (ii): It follows immediately from Proposition 3.13.
(ii) ⇒ (i): Let R be a set such as the hypothesis poses. Then Proposition 3.5 assures us
that there are U, V ∈ D(Ip(L)), such that U ⊆ V and R = V \U , since, by Observation
3.4, R is a convex set.

On the other hand, since σL is an isomorphism, there are a, b ∈ L such that a ≤ b,
U = σL(a) and V = σL(b). Consequently G =

⋃
Ci∩(V \U) 6=∅

Ci, with Ci maximal chain in

Ip(L), V = σL(b) and U = σL(a).
Then, by Proposition 3.13, we can affirm that ΘO4(G) = Θ(a, b), and therefore

ΘO4(G) is a principal M3−congruence. �

Proposition 3.15 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G) = Θ(a, b),

(ii) G = (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)).

Proof. It results from what was seen in Proposition 3.13 and the fact that
(I) (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)) =

⋃
Ci∩(V \U) 6=∅

Ci, with Ci maximal

chain in Ip(L), U = σL(a) and V = σL(b).
The demonstration of (I) is long, for this reason we expose it here.
Let U = σL(a) and V = σL(b).

(i) (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)) ⊆
⋃

Ci∩(V \U) 6=∅
Ci:

(1) x ∈ (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)),
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(2) x ∈ (∇∗σL(b) \ ∇∗σL(a)) or x ∈ 4∗σL(b) \ 4∗σL(a)), [(1)]

If

(3) x ∈ (∇∗σL(b) \ ∇∗σL(a)), [(2)]

(3.1) (a) x ∈ σL(b) or (b) x ∈ ¬σL(b), [(3), (DP2) (B)]

(3.2) x 6∈ σL(a) and x 6∈ ¬σL(a). [(3), (DP2) (B)]

If in (3.1) occurs (a), then
(3.1.a.1) x ∈ σL(b) \ σL(a)), [(3.1)(a), (3.2)]

(3.1.a.2) x ∈ Cx, where Cx is the two-element chain
that contains x, [Ip(L) is an M3−space]

(3.1.a.3) Cx ∩ (σL(b) \ σL(a)) 6= ∅, [(3.1.a.1), (3.1.a.2)]

(3.1.a.4) x ∈ Cx ⊆
⋃

Ci∩(σL(b)\σL(a)) 6=∅
Ci. [(3.1.a.2), (3.1.a.3)]

If in (3.1) occurs (b), then
(3.1.b.1) there is y ∈ minIp(L) ∩ σL(b) such that y ≤ x, and
x 6∈ maxIp(L) ∩ σL(b). [(3.1)(b), (DP2) (N)]

If in (3.1.b.1)
(3.1.b.2) x 6∈ maxIp(L),

we have to
(3.1.b.3) x ∈ minIp(L), [(3.1.b.2), Ip(L) is an M3−space]

therefore
(3.1.b.4) y = x, [((3.1.b.1), (3.1.b.3)]

(3.1.b.5) x ∈ σL(b) \ σL(a), [(3.1.b.1), (3.1.b.4), (3.2)]
(3.1.b.6) x ∈ Cx, where Cx is the two-element chain
that contains x, [Ip(L) is an M3−space]

(3.1.b.7) Cx ∩ (σL(b) \ σL(a)) 6= ∅, [(3.1.b.5), (3.1.b.6)]

(3.1.b.8) x ∈ Cx ⊆
⋃

Ci∩(σL(b)\σL(a)) 6=∅
Ci. [(3.1.b.6), (3.1.b.7)]

If in (3.1.b.1)
(3.1.b.9) x 6∈ σL(b),

(3.1.b.10) y < x, [(3.1.b.1), (3.1.b.9)]

(3.1.b.11) x ∈ Cy, where Cy is the two-element chain
that contains y, [(3.1.b.10), Ip(L) is an M3−space]
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(3.1.b.12) y ∈ σL(b) \ σL(a), [(3.1.b.1), (3.1.b.10), (3.2)]

(3.1.b.13) Cy ∩ (σL(b) \ σL(a)) 6= ∅, [(3.1.b.11), (3.1.b.12)]

(3.1.b.14) x ∈ Cy ⊆
⋃

Ci∩(σL(b)\σL(a)) 6=∅
Ci. [(3.1.b.11), (3.1.b.13)]

If in (2)

(4) x ∈ 4∗σL(b) \ 4∗σL(a)),

(4.1) x ∈ (MIp(L)σL(b)], [(4), (DP2) (D)]

(4.2) there is y ∈ maxIp(L) ∩ σL(b) such that x ≤ y. [(4.1)]

If

(4.3) y ∈ σL(a),

(4.4) x ∈ (MIp(L)σL(a)], [(4.2), (4.3)]

(4.5) x ∈ 4∗σL(a), [(4.4), (DP2) (D)]

(4.6) (4.5) contradicts (4),

(4.7) y 6∈ σL(a), [(4.3), (4.6)]

(4.8) y ∈ σL(b) \ σL(a), [(4.2), (4.7)]

(4.9) Cy ∩ (σL(b) \ σL(a)) 6= ∅, [(4.8)]

(4.10) x ∈ Cy ⊆
⋃

Ci∩(σL(b)\σL(a)) 6=∅
Ci. [(4.2), (4.9)]

(ii)
⋃

Ci∩(V \U) 6=∅
Ci ⊆ (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)):

(1) x ∈
⋃

Ci∩(V \U) 6=∅
Ci, with Ci maximal chain in Ip(L),

(2) there is i0 such that x ∈ Ci0 and Ci0 ∩ (V \ U) 6= ∅, [(1)]

(3) x ∈ V \ U or x 6∈ V \ U . [(2)]

If in (3)

(4) x ∈ V \ U ,

two cases may occur:
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(4.1) (a) maxIp(L) or (b) x ∈ minIp(L), [Ip(L) is an M3−space]

if in (4.1), occurs (a)

(4.2) x ∈ 4∗V , [(4.1)(a), (DP2) (D)]

(4.3) x 6∈ 4∗U , [(4), 4∗U ⊆ U ]

(4.4) x ∈ 4∗V \ 4∗U , [(4.2), (4.3)]

if in (4.1), occurs (b)

(4.5) x ∈ mIp(L)V , [(4), (4.1)(b)]

(4.6) x ∈ ¬V ⊆ ∇∗V , [(4.5), (DP2) (B)]

if

(4.7) x ∈ ∇∗U ,

(4.8) x ∈ ¬U , [(4), (4.7)]

(4.9) x ∈ mIp(L)Ip(L)U , [(4.8), (4.5)]

(4.10) x ∈ U , [(4.9)]

(4.11) (4.10) contradicts (4),

(4.12) x 6∈ ∇∗U , [(4.7), (4.11)]

(4.13) x ∈ ∇∗V \ ∇∗U , [(4.6), (4.12). Ip(L) is an M3−space]

If in (3)

(5) x 6∈ V \ U ,

(5.1) x ∈ Ci0 = Cy with y ∈ V \ U , [(2), (5)]

working analogously to the case (4), from (5.1) we have:

(5.2) y ∈ 4∗V \ 4∗U or y ∈ ∇∗V \ ∇∗U , [(5.1)]

taking into account that sets 4∗Z and ∇∗Z are 4−involutive
for every subset Z of the space, it turns out that

(5.3) x ∈ 4∗V \ 4∗U or x ∈ ∇∗V \ ∇∗U . [(5.1), (5.2)]

�
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Corollary 3.16 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G) = Θ(a, b),

(ii) G = σL(d) with d = (∇b ∧∇a) ∨ (4b ∧4a)) ∈ K(L), where ∇a and 4a are the
Boolean complement in K(L) of ∇a and 4a respectively.

Proof. It is an immediate consequence of Propositions 3.6 and 3.15. �

Remark 3.17 As a consequence of Proposition 3.6, the set G = σL(d) with d ∈ K(L),
is an open, closed and 4−involutive subset of Ip(L).

Proposition 3.18 Let L ∈ M3, let d ∈ K(L) and d be the Boolean complement of d
in K(L). Then the following conditions are equivalent for all M3−congruence ϕ on L:

(i) ϕ = ΘO4(σL(d)),

(ii) ϕ = ΘC4(σL(d)),

(iii) ϕ = θ(I(d)), where θ(I(d)) is the congruence associated with the ideal I(d)

Proof. (i) ⇔ (ii): It results from Theorems 1.1 and 2.4, Lemma 2.3 and Observation
3.17.

(ii) ⇒ (iii): Let ϕ = ΘC4(σL(d)), with d ∈ K(L). Then Y = σL(d) is a closed and
increasing subset of Ip(L) and by Proposition 3.2, there is the ideal I =

⋂
Q∈Y

Q such

that Y = σ(I). Let us see what I = I(d).
Indeed, let x ∈ I(d) and Q ∈ Y , then Q ∈ Ip(L) and d /∈ Q. Since 0 = d ∧ d ∈ Q,

for all Q ∈ Y , we have that d ∈ Q for all Q ∈ Y and so x ∈
⋂

Q∈Y

Q.

For the other inclusion, let y ∈
⋂

Q∈Y

Q, then it is clear that (1) y, d ∈ Q, for all

Q ∈ Y . If y 6≤ d, then from Birkhoff-Stone theorem, there is an ideal prime S such
that d ∈ S and y /∈ S. Then S ∈ σL(d) = Y and y /∈ S, which contradicts (1). Hence,
y ∈ I(d).

Consequently, Y = σ(I(d)), whence ϕ = θ(I(d)) by Proposition 3.1.

(iii)⇒ (ii): Let d ∈ K(L) and ϕ = θ(I(d)), being θ(I(d)) the congruence associated
with the ideal I(d). Then by Proposition 3.1, we have that (1) ϕ = Θ(σ(I(d))).

Besides, (2) σ(I(d)) = σL(d). Indeed: if I ∈ σ(I(d)), then I ∈ Ip(L) and I(d) ⊆ I.
Then d ∈ I and since I is an proper ideal, for being an prime ideal, it is fulfilled that
d /∈ I. So I ∈ σL(d). Reciprocally, if I ∈ σL(d), then I ∈ Ip(L) and d /∈ I. Since
0 = d ∧ d, results d ∈ I. Consequently I(d) ⊆ I and therefore I ∈ σ(I(d)).
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Then, by (1), (2) and Observation 3.17, we infer that ϕ = ΘC4(σL(d)). �

Proposition 3.19 Let L ∈ M3 and Ip(L) be the M3−space associated with L. If
G ∈ O4(Ip(L)), then the following conditions are equivalent:

(i) ΘO4(G), is a principal M3−congruence on L,

(ii) G is an open, closed and 4−involutive subset of Ip(L).

Proof. (i) ⇒ (ii): By Corollary 3.16, we know that if ΘO4(G) is a princi-
pal M3−congruence, say ΘO4(G) = Θ(a, b), with a ≤ b, then G = σL(d) with
d = (∇b ∧ ∇a) ∨ (4b ∧ 4a) ∈ K(L). From the latter, by Observation 3.17, we in-
fer that G is an open, closed, and 4−involutive set of Ip(L).

(ii) ⇒ (i): Let G be an open, closed and 4−involutive subset of Ip(L), then by Propo-
sition 3.5, G = V \ U , where U, V ∈ D(Ip(L)), U ⊆ V , V = σL(b) and U = σL(a),
with a, b ∈ L. Since G is also 4−involutive subset, then by taking into account Lemma
2.1 it is verified, G = 4∗V \ 4∗U . On the other hand, by (DP2), we can prove that
∇∗V \ ∇∗U ⊆ 4∗V \ 4∗U . Then, G = (∇∗σL(b) \ ∇∗σL(a)) ∪ (4∗σL(b) \ 4∗σL(a)),
hence ΘO4(G) is a principal M3−congruence, by Proposition 3.15. �

Theorem 3.20 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. Then,
the lattice OC4(Ip(L)) of open, closed and 4−involutive subsets of Ip(L) is isomorphic
to the lattice ConM3P (L) of principal M3−congruences on L, and the isomorphism is
established by the function ΘOC4 : OC4(Ip(L)) −→ ConM3P (L) defined by the same
prescription as the function ΘO4 given in (A3’).

Proof. It is a consequence of Theorem 2.4, Proposition 3.19, and the fact that
OC4(Ip(L)) is a sublattice of O4(Ip(L)). �

Corollary 3.21 The lattice of the principal congruences of a bounded M3−lattice is a
Boolean algebra.

Proof. It is an immediate consequence of Theorem 3.20, taking into account that
the lattice of open, closed and 4−involutive subsets of its associated M3−space is a
Boolean algebra. �

Remark 3.22 The following properties are satisfied in every bounded M3−lattice:
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(i) the intersection of a finite number of principal M3−congruences is also a principal
M3−congruence,

(ii) the principal M3−congruences are Boolean.

Proposition 3.23 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. If
G is a subset of Ip(L), then the following conditions are equivalent:

(i) G is an open, closed and 4−involutive subset of Ip(L),

(ii) there exists a ∈ K(L) such that G = σL(a).

Proof. (i) ⇒ (ii): Let G be an open, closed and 4−involutive subset of Ip(L), then,
in particular G is an open, closed and decreasing subset. Since σL is an isomorphism
between L and D(Ip(L)), there is a ∈ L such that G = σL(a). On the other hand, as
G is 4−involutive subset, it is verified that G = 4∗G, and consequently G = σL(4a)
with 4a ∈ K(L).

(ii) ⇒ (i): By hypothesis, there is a ∈ K(L) such that G = σL(a). Then a = 4a
and G = σL(4a) = 4∗σL(a). Hence, G is an open, closed, and 4−involutive subset of
Ip(L). �

Theorem 3.24 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. Then,
the lattice K(L) of Boolean elements of L is isomorphic to the lattice OC4(Ip(L)) of
open, closed and 4−involutive subsets of Ip(L), and the isomorphism is defined by
the restriction to K(L) of isomorphism σL : L −→ D(Ip(L)), defined as in (A1).

Proof. Immediate from (DP1) of Section 1, and Proposition 3.23. �

Corollary 3.25 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. Then,
the lattice K(L) of Boolean elements of L is isomorphic to the lattice ConM3P (L) of
principal M3−congruences on L, and the isomorphism is the composition ΘOC4 ◦ σL.

Proof. Immediate from Theorems 3.20 and 3.24. �

The following corollary provides a characterization of the congruences on the finite
M3−lattices.

Corollary 3.26 The M3−congruences on a finite M3−lattice are principal.
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Proof. Let L be a finite M3−lattice and let ϕ be an M3−congruence on L. Then
by Theorem 2.4, there is an open and 4−involutive subset G of Ip(L) such that
ϕ = ΘO4(G). On the other hand as L is finite, then Ip(L) is the cardinal sum of a
finite number of two-elements chains and the Priestley space topology is the discrete.

Then G is open, closed and 4−involutive set and consequently the congruence that
determines, by Theorem 3.20, is a principal M3−congruence. �

Corollary 3.27 Let L be a bounded M3−lattice such that its associated M3−space is
the cardinal sum of n chains, with n a positive integer. If K(L) is the lattice of Boolean
elements of L, then |ConM3(L)| = |K(L)| = 2n, where |Z| denotes the cardinality of
the Z set.

Proof. Let L be a bounded M3−lattice in the conditions of the theorem. Then L is
a finite set and consequently, by Corollary 3.26, the congruences on L are principal.

On the other hand, from Theorem 3.20 and Proposition 3.13, each principal M3−congruence
on L is determined by a subset of Ip(L), which is a finite union of
two-element chains. Then taking into account Corollary 3.25, we conclude that
|K(L)| = |ConM3P (L)| =

(
n
0

)
+

(
n
1

)
+ . . . +

(
n
n

)
= 2n. �

Corollary 3.28 Let L be a finite M3−lattice with n Boolean elements (i.e. |K(L)| =
n), then its M3−space associated is a cardinal sum of Log2n two-element chains.

Proof. It follows immediately from Corollary 3.27. �

Finally we were able to determine that the principal M3−congruences on an M3−lattice
are the congruences associated to the ideals generated by the Boolean elements of this
algebra, as the following result shows:

Proposition 3.29 Let L ∈ M3, Ip(L) be the M3−space associated with L and a, b ∈ L
such that a ≤ b. If ∇a and 4a are the Boolean complements in K(L) of ∇a and 4a,
respectively, then the following conditions are equivalent:

(i) Θ(a, b) = ΘO4(G),

(ii) Θ(a, b) = ΘO4(σL(d)), with d = (∇b ∧∇a) ∨ (4b ∧4a)) ∈ K(L),

(iii) Θ(a, b) = θ(I(d)), with d = (∇b∧∇a)∨ (4b∧4a)) ∈ K(L), where θ(I(d)) is the
congruence associated to the ideal I(d).
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Proof. It is a direct consequence from Corollary 3.16 and Proposition 3.18. �

Corollary 3.30 Let L ∈ M3 and let ϕ be a congruence on L. Then the following
conditions are equivalent:

(i) ϕ is a principal M3−congruence on L,

(ii) ϕ = θ(I(d)) with d ∈ K(L), where θ(I(d)) is the congruence associated with the
ideal I(d).

Proof. It follows immediately by Theorem 2.4 and Proposition 3.29. �

Corollary 3.31 Every bounded M3−lattice has the principal M3−congruences equa-
tionally definable (CPDE).

Proof. It is immediate from Corollary 3.30. �

An important consequence of the above proposition is the following:

Proposition 3.32 If L ∈ M3, ϕ1 and ϕ2 are principal M3−congruences on L such
that ϕ1 = θ(I(d)) and ϕ2 = θ(I(k)) with d, k ∈ K(L), then the following properties are
verified:

(i) ϕ1 ∨ ϕ2 = θ(I(d ∨ k)),

(ii) ϕ1 ◦ ϕ2 = ϕ1 ∨ ϕ2.

Proof. Let ϕ1 and ϕ2 be principal M3−congruences on L such that (1) ϕ1 =
θ(I(d)), (2) ϕ2 = θ(I(k)), with d, k ∈ K(L). By Proposition 3.18, we have that
ϕ1 ∨ ϕ2 = ΘO4(σL(d)) ∨ΘO4(σL(k)) and as ΘO4 and σL are isomorphisms, we obtain
(3) ϕ1 ∨ ϕ2 = θ(I(d ∨ k)).

On the other hand, we prove that ϕ1◦ϕ2 = ϕ1∨ϕ2. Indeed, let (x, y) ∈ ϕ1◦ϕ2, then
there exists z ∈ L such that (x, z) ∈ ϕ2 and (z, y) ∈ ϕ1. Then, taking into account (1)
and (2), it is fulfilled that x∨k = z∨k and z∨d = y∨d, whence x∨d∨k = z∨d∨k and
z∨d∨k = y∨d∨k. So x∨d∨k = y∨d∨k, from which we infer that (x, y) ∈ θ(I(d∨k))
and from (3) we then conclude that (x, y) ∈ ϕ1 ∨ ϕ2.

The other inclusion is immediate and it results from the fact that ϕi ⊆ ϕ1 ◦ ϕ2 for
i = 1, 2 and therefore ϕ1 ∨ ϕ2 ⊆ ϕ1 ◦ ϕ2. �
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Corollary 3.33 In the variety M3, the composition of principal congruences is com-
mutative.

Proof. It is an immediate consequence of Proposition 3.32. �

4 Boolean M3−congruences

The following results give a characterization of Boolean congruences on M3−lattices.

Lemma 4.1 Let L ∈ M3, Ip(L) be the M3−space associated with L and Y be an open
and 4−involutive subset of Ip(L). Then the following conditions are equivalent:

(i) ΘO4(Y ) is a Boolean M3−congruence on L,

(ii) Ip(L) \ Y is an open and 4−involutive subset of Ip(L).

Proof. (i) ⇒ (ii): Let ΘO4(Y ) be a Boolean M3−congruence on L. Then, there is
ΘO4(G) ∈ ConM3(L), such that ΘO4(Y ) ∩ ΘO4(G) = idL and ΘO4(Y ) ∪ ΘO4(G) =
L× L, being Y and G open and 4−involutive subsets of Ip(L).

Since ΘO4 is an isomorphism it is verified that ΘO4(Y ∩G) = ΘO4(∅) and ΘO4(Y ∪
G) = ΘO4(Ip(L)). Hence, Y ∩G = ∅ and Y ∪G = Ip(L), and therefore G = Ip(L)\Y ,
which implies that Ip(L) \ Y is an open and 4−involutive set.

(ii) ⇒ (i): Let G = Ip(L) \ Y be an open and 4−involutive subset of Ip(L), then
ΘO4(G) ∈ ConM3(L). From the Theorem 3.20, Y is also an open and 4−involutive
set, therefore we have to ΘO4(Y ) ∈ ConM3(L). Besides, for being ΘO4 an iso-
morphism, we have that ΘO4(Y ) ∩ ΘO4(G) = ΘO4(Y ∩ G) = ΘO4(∅) = idL and
ΘO4(Y )∪ΘO4(G) = ΘO4(Y ∩G) = ΘO4(Ip(L)) = L×L, which implies ΘO4(Y ) is a
Boolean M3−congruence. �

Proposition 4.2 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. If Y
is a subset of Ip(L), then the following conditions are equivalent:

(i) ΘO4(Y ) is a Boolean M3−congruence on L,

(ii) Y is an open, closed, and 4−involutive subset of Ip(L).

Proof. (i) ⇒ (ii): If ΘO4(Y ) is a Boolean M3−congruence on L, then Y is an open
and 4−involutive subset of Ip(L). By Lemma 4.1, it is verified that Ip(L) \ Y is also
an open and 4−involutive subset of Ip(L), then we have that Y is an open, closed and
4−involutive subset of Ip(L).
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(ii) ⇒ (i): Let Y be an open, closed, and 4−involutive subset of Ip(L). Then Ip(L)\Y
is an open and 4−involutive subset and by Lemma 4.1, we can conclude that ΘO4(Y )
is a Boolean M3−congruence. �

Corollary 4.3 Let L ∈ M3. Then the following conditions are equivalent:

(i) ϕ is a Boolean M3−congruence on L,

(ii) ϕ is a principal M3−congruence on L.

Proof. It follows from Theorem 3.20 and Proposition 4.2. �

Theorem 4.4 Let L ∈ M3 and let Ip(L) be the M3−space associated with L. Then,
the lattice OC4Ip(L) of open, closed and 4−involutive subsets of Ip(L) is isomorphic
to the lattice ConM3B(L) of Boolean M3−congruences on L, and the isomorphism
is established by function ΘOC4 : OC4(Ip(L)) −→ ConM3B(L) defined by the same
prescription as the function ΘO4 given in (A3’).

Proof. It is immediate by Corollary 4.3 and Theorem 3.20. �
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