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Abstract

A Diophantine game on a polynomial expression with integer coeffi-
cients p(x1, y1, x2, y2, . . . , xn, yn) is a finite-length full-information, win-
lose game between two players X (first) and Y (second), who, in their
turns i = 1, 2, . . . , n, successively pick natural numbers xi, then yi. The
value of the payoff-polynomial p(x1, y1, . . . , xn, yn) determines the win-
ner. If the value is 0 then Y wins, otherwise X wins. The law of excluded
middle declares that for every polynomial p, one of the two players “has”
a winning strategy. But this empty declaration opens up a labyrinth of
metamathematical subtleties.

Diophantine games were introduced by James Jones in [12] in 1982.
The first layer of subtleties was challenged when Jones investigated ex-
istence and non-existence of computable (rather than declared to exist)
winning strategies in various Diophantine games. This research has close
connection to investigations of Hilbert’s Tenth Problem on the integers.
It was important at that time to isolate and illustrate the distinction
between abstract “existence” of a winning strategy and existence of an
algorithm that computes the winning moves. It was proved by Jones that
for some concrete Diophantine games, neither of the two players has a
computable winning strategy. But suppose one of the players is given an
algorithm pertaining to provide the winning moves. How can we be sure?
Perhaps, being mathematicians, we could try to prove it. For this, we
introduce the notion of a T -provably computable winning strategy, where
T is a strong enough axiomatic theory that can formalize our reasoning
methods. But what if that algorithm is neither T -provably computable
(halting), nor T -provably winning?

Here, we investigate Diophantine games by studying further layers of
metamathematical intricacy, related to existence or non-existence of prov-
ably computable winning strategies. What if there “exists” an algorithm
pertaining to compute the winning moves but our strongest mathemat-
ical methods are not sufficient to prove that it halts and does the job
correctly? It turns out that for some rather simple polynomials (we give
examples), there exists a computable winning strategy but there does not
exist a T provably computable winning strategy, where T may be taken to
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comprise of very strong classical mathematical reasoning methods (Primi-
tive Recursive Mathematics, Peano Arithmetic, Predicative Mathematics,
etc).

In the process of proving unprovability, we notice that the common
combinatorial method of proving unprovability (the method of indiscernible
elements) has a clear game-theoretic interpretation: indiscernible ele-
ments become upper bounds in the (otherwise potentially infinite) searches
for the winning moves.

We finish with a curious example of a Diophantine game where neither
player has a Peano Arithmetic-provably winning strategy at the start,
but the initial position is a deadly zugzwang for the losing player X, who
can, nevertheless, inflict unboundedly high logical-resource damage on his
opponent in revenge.

Keywords: Unprovability, undecidability, Diophantine games, provable strat-
egy, logical zugzwang.

This article is multidisciplinary: it is exploring yet one more connection be-
tween logic and games, namely the issue of provability and unprovability of
existence of winning strategies for a large class of seemingly simple games.
This is an open-ended project, with deliberate emphasis on low generality, and
on planting the seeds of further interactions and generalizations.

1 Games

Since ancient times, people played games for pleasure. Nowadays, with the cre-
ation, expansion and diversification of game theory, we can suddenly perceive
and imagine games everywhere: there are situations that we may interpret and
codify as games and we deliberately model various problems in mathematics,
sciences and decision-making as games. There are competitive games and co-
operative games. The number of players may vary. Games are studied for
existence of a winning strategy, a losing strategy, the best strategy, winning
and losing positions, equilibrium, etc, and for computational complexity of
such, where applies. Also, for the minimal, maximal, average number of steps
to win or lose or draw, and for many other properties. Some are ancient board
games on finite boards, I am including their oriental spellings just in case:
go (围棋, 碁, 바둑), chess, xiàngq́ı (象棋), shōgi (将棋)) or infinite boards
(tochki, naughts-and-crosses(5)). Some are played without a board: various
mathematical problems, numerous card games, games invented in combina-
torial game theory, applications for negotiations, applications in sciences and
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decision-making). Some games involve randomness (a roll of a die, a flip of
a coin, a shuffle of a deck of cards or a computer-generated “random” num-
ber), others follow only the decisions of the players. Some games allow for
a draw (tie), others don’t. Some games necessarily finish (hex, nim, chess,
gomoku, xiàngq́ı (象棋)), others theoretically can continue forever (noughts-
and-crosses(5), shōgi (将棋), grand shōgi (大将棋)). I will not go further de-
scribing this fascinating family of subjects and its incarnations and applications
(in Economics, Finance, Negotiation, Biology, Decision-making, Psychology,
etc), especially that there are many excellent books about them all.

Advances in computers and computer science recently produced some spec-
tacular results and continue doing so. I will refrain from listing recent discover-
ies because the field is developing so fast that whatever I say today will shortly
be out of date.

Combinatorial game theory in particular, the core of game-theoretic thought,
is a clearly defined subject by now (see [6], [1]), with a rich culture and emerg-
ing body of problems and results, clearly connected to what used to be called
“mathematical logic” (think of branches through trees, ordinal semi-invariants,
strategy-stealing and symmetry arguments). For a brief and incomplete list of
examples of the game-paradigm in various corners of former “logic” – see the
end of this article.

This article is about metamathematics of Diophantine games. I deliberately
chose this low level of generality, so that the concepts and solutions would
emerge concrete and clear. However, the material will generalize onto a much
larger class of games, where players have infinite numbers of choices at each
of their finitely-many moves. Let me rephrase it, and it will be important
for understanding the scope of this article. Some games can be re-codified
(in many ways) to become other games, with certain mathematical properties
staying invariant. We may seem to study only Diophantine games in this note,
but really we simultaneously lay ground to the future study of many other
classes of “arithmetically complete” games, their subclasses and their future
cousins.

There is also some “reverse mathematics” of games to be built and discov-
ered. As “first player wins in arbitrarily-large Hex” is somewhat equivalent
to Brouwer’s Fixed-Point Theorem [8], we should naturally associate logical
complexity of provably winning in Hex with the theory WKL0 (the strength of
Brouwer’s theorem). One can also extract some reverse mathematics from vari-
ous results on Turing-completeness of the computation of the Nash equilibrium
in the general case.

However, let me add a necessary disclaimer at this stage. This article is
in pure mathematics and not computer science. The issues of feasibility, real-
life algorithms and simplifications, of philosophy of computational complexity
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classes will be irrelevant to us in this article. It was possible, and actually quite
easy, to add lots of such material, but I deliberately decided not to. Instead
the article concentrates in detail on five crucial components :

1. an introductory essay on metamathematical subtleties;

2. a difference between computable strategy and a provably computable
strategy (also reporting some old results by Jones);

3. first ever examples of Diophantine games without a provable strategy;

4. a new result explaining unprovability in game-theoretic terms (bounds
on potentially unbounded searches);

5. a curious example of a deadly Diophantine zugzwang with revenge.

2 Basic logic

I am not assuming much knowledge of logic, but will nevertheless list some
definitions, and, most importantly of all, fix the classical examples and names of
several canonical classical collections of mathematical methods (encapsulated
in axiomatic theories) used by mathematicians to prove theorems.

Throughout the article, we shall need arithmetical formulas, sentences,
polynomials and understanding of usual mathematical reasoning formalizable
as formal mechanical proofs in various axiomatic systems. I will define a small
number of classical well-known axiomatic systems sufficient for our purposes.
The readers may think of our axiomatic systems as various collections of meth-
ods of mathematical proof. The main results of this article are of the form:
“such and such methods will never produce a proof of existence of a winning
strategy in this concrete game”.

Arithmetical formulas are constructed in the expected way from the sym-
bols for variables x, y, z, w, . . ., operations +,×,−, relations =, <,>, constants
0, 1, logical connectives ∧ “and”, ∨ “or”, ¬ “not”, → “implies”, ↔ “if and
only if” and two quantifiers: ∀ “for all” and ∃ “there is”. Parenthesis and
common abbreviations like x3 (instead of x × (x × x)) and 5 (instead of
1 + (1 + (1 + (1 + 1)))) are routinely used. Arithmetical formulas are supposed
to talk about what “natural numbers” {0, 1, 2, 3, . . .}, that is, non-negative
integers, which some decades ago seemed as a definite and non-controversial
mathematical object. We could equivalently set up our whole arithmetical and
Diophantine story on full integers or on the rationals (but not on the reals)1

but let us stay with the set-up chosen by the predecessors.

1The fact that Hilbert’s Tenth Problem on the rationals is still unsolved doesn’t affect us
because we allow multiple quantifiers. Real or complex numbers are not suitable because of
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A formula without free variables is called a sentence. There is a stan-
dard deduction system to mechanically transform formulas into other formu-
las, called predicate calculus. (All deduction rules are obvious.) On the top of
the predicate calculus we can add some straightforward rules of manipulations
with arithmetical formulas. This weak system, which defines exponentiation,
and has induction for formulas without unbounded quantifiers, is called the
Exponential Function Arithmetic, and denoted EFA.

Every arithmetical formula can be (provably in EFA) transformed (up to
renaming of variables and dummy variables) into an equivalent form:

∀x1 ∃x2 ∀x3 . . . Qnxn p(x1, x2, x3, . . . , xn) = 0,

where p is a polynomial expression with integer coefficients and the variables
are supposed to range over “natural numbers”. The quantifier Qn is “∃” when
n is even and “∀” when n is odd.

Let me now mention some classical collections of mathematical methods
of argumentation, and their names. (I would like to apologize to my readers
and ask them not to be scared of the unfortunate abbreviations used to denote
axiomatic systems. They came from the era when abbreviated notation was
not yet considered low taste.)

1. “Arithmetic of Basic Manipulations” comes in three forms of increas-
ing proof-capabilities: “Arithmetic Without Induction” (all basic arith-
metical rules, but no possibility of mathematical induction), “Polyno-
mial Function Arithmetic” (denoted I∆0 or PFA) allows for more cod-
ing, more manipulations with finite sets and mathematical induction for
formulas without unbounded quantifiers. “Exponential Function Arith-
metic”, which we saw above, (denoted I∆0 + exp or EFA) adds expo-
nential function, and hence unrestricted manipulations with finite sets,
and so, through coding, can be considered to be the Finite Set Theory.
However, its coding devices go a very long way, so long that almost all ex-
isting mathematics can be conducted (at least in approximated versions)
in this theory.

2. “Primitive Recursive Mathematics”, in its various guises (PRA, IΣ1,
RCA0) adds induction for one-quantifier formulas, which increases the
strength of EFA methods immensely. If you further add all axioms of
n-nested induction, the resulting stronger theory will be called IΣn, the
theory of induction for n-quantifier formulas.

decidability of the corresponding theories (it is easier to establish existence of a real root than
a rational root). However, interesting questions can still be asked in an expanded language
(say, by adding exponentiation), and the answer may depend on the, also as yet unproved,
Schanuel Conjecture. Several deep results are known.
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3. “Peano Arithmetic” (PA) is
⋃∞
i=1 IΣn, that is full mathematical induc-

tion (for all arithmetical formulas). It was barely believable 40 years ago
that any examples of meaningful concrete PA-unprovable mathemati-
cal statements could ever be found. Now this is a subject in its own,
with many interesting results, starting with the famous Paris-Harrington
Principle (PH), a version of Ramsey’s theorem, unprovable in PA (see
the original in [21], and a recent exposition in [2]).

4. “Predicative Mathematics”, denoted ATR0, adds the possibility of trans-
finite arguments along countable well-orderings. These methods are of-
ten necessary in Infinitary Combinatorics (infinite-dimensional Ramsey
theory, WQO theory), the theory of Banach Spaces, and occasionally
elsewhere in functional analysis. A somewhat strengthened version of
“Predicative Mathematics” is called “Borel Mathematics”.

5. “The axiomatic theory of natural numbers and sets of numbers”, de-
noted Z2, is more commonly known as the “Axiomatic Second-Order
Arithmetic”. This theory has huge strength (ZFC without Powerset)
and is not yet barely understood, at least in its first-order fragments
(polynomial equations with quantifiers).

6. Let me also mention various set theories, like ZF and its extensions (they
can all talk, among other things, about natural numbers). Also, perhaps,
we shouldn’t forget about methods of mathematical reasoning that have
not yet been discovered. It is important that I mentioned them now
because the discussion will depend on them later on.

Starting from IΣ1 (Primitive Recursive Mathematics) onwards, all the listed
axiomatic theories constitute extremely strong collections of methods, so every
time their necessity to prove something or their insufficiency to prove something
is discovered – it signals the presence of some deep and non-trivial mathemat-
ics2. This article will show, that whatever collection T of methods of proof
one possesses, there will be Diophantine games without a T -provably winning
strategy for either player. (This has been theoretically known to logicians
around Hilbert’s Tenth Problem since the 1970s and is explicitly mentioned by
Jones in [12], page 69.)

The transformations of arbitrary arithmetical formulas into polynomial
equations with quantifier-prefixes, and the struggle to minimize the polyno-
mial, uses methods and tricks, some obvious and some deep, from the literature
on the solution of Hilbert’s Tenth Problem. There are many sources available.
I will only mention [12], [11], [18], [25], [3], [4], but there are many more.

2However, the phenomenon does not reverse: there is a lot of deep and non-trivial math-
ematics unrelated to logical strength.
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3 Definition of Diophantine games

Diophantine games were introduced by James Jones in [12] as a narrowing
and concretising of the concept of recursion-theoretic games with a decidable
winning condition pioneered by Michael O. Rabin in 1957 [22] and further de-
veloped in that era by Alistair Lachlan [17]. By now, recursion-theoretic games
have become fundamental and paradigmatic in classical computability theory.
Many theorems, notions and definitions can be almost uniformly presented as
statements about two-player finite or infinite recursion-theoretic games. We
shall not study general recursion-theoretic games here and refer the interested
reader to Soare’s new monograph [26], section 2.5 and chapters 14, 15, 16, as
well as to Martin Kummer’s article [16].

We study Diophantine games as defined by James Jones in [12] and dis-
cussed by Yuri Matiyasevich in his book [18], chapter 7 and his recent article
[19]. Given a polynomial expression p(x1, y1, . . . , xn, yn) with integer coeffi-
cients in at most the variables shown (some variables are allowed to be dummy
variables3), the Diophantine game between Player X and Player Y proceeds
as follows. First, Player X picks a natural number x1, then Player Y picks a
natural number y1, etc, until Player X chooses xn and Player Y answers yn.
(Remember that some variables could be dummies.) The number 2n, where
n is the maximal index of a variable (xn or yn) that occurs explicitly in the
expression p is called the length of our game. Player X is declared the winner
if p(x1, y1, . . . , xn, yn) 6= 0, otherwise p(x1, y1, . . . , xn, yn) = 0 and Player Y is
declared the winner. Hence, a Diophantine game is a two-player finite-length
win-lose game with perfect information and a trivially computable winning
condition. It is easy to see that the statement

∃x1 ∀y1 . . . ∃xn ∀yn p(x1, y1, . . . , xn, yn) 6= 0

naively means that Player X ‘can always win’. The negation of this formula

∀x1 ∃y1 . . . ∀xn ∃yn p(x1, y1, . . . , xn, yn) = 0

naively means that Player Y ‘can always win’.
So, from a naive point of view, for any polynomial expression p, one of the

two players ‘has’ a winning strategy, depending on which of the two formulas
is “true”: the first formula (then Player X ‘has’ a winning strategy) or its
negation, the second one (then Player Y ‘has’ a winning strategy). This is no

3Throughout this paper we identify a polynomial with its explicit syntactic expression,
hence each polynomial p will give rise to infinitely-many Diophantine games via rewriting
p into various equivalent forms, some of which may use new or old dummy variables in
decorative ways. For example, we can always rewrite p into p+ x100 − x100.
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more than the law of excluded middle from classical logic. There is no theorem
or mathematical phenomenon behind this empty declaration that one of the
players “has a winning strategy”.

4 Arithmetical realism

But what do we mean by ‘has’ or ‘can’ or ‘exists’? Non-constructive existence
has always been a dodgy can of worms throughout metamathematics. The
more we think about it - the less clear the meaning of ‘has’ or ‘can’ or ‘exists’
becomes. In the next two pages, we shall try to disambiguate and spell out
some clarified and more exact versions of the inherently vague, due to meta-
mathematical phenomena, notions of a “winning strategy”, its “existence” and
“being able to always win”. The subtlety will go far beyond the first layer
that distinguished “existence” of a winning strategy and “existence” of a com-
putable winning strategy. (This first layer has been successfully approached
by James Jones in the 1970s – 1980s, but there is still much work left to be
done.)

“Arithmetical realism” (or “arithmetical platonism”) is the belief that ev-
ery arithmetical sentence is either “true” or “false”, despite the possibility of
being highly unprovable or even absolutely undecidable. Given an arithmetical
sentence, isn’t it or its negation true in N? What is there to think about? This
is a conservative position that tries to reconcile pre-Gödelian views with post-
Gödelian metamathematical wonders such as persistent uneliminable unprov-
ability, algorithmic undecidability and the potential of eventual discovery of
first-order absolute undecidability, Arithmetical Bifurcation into equally good
highly unprovable arithmetical sentences ϕ and its negation ¬ϕ, that is abso-
lute absence of preference as to which of the two opposite alternatives is “more
true”. For in-depth discussion of Arithmetical Bifurcation, see [5]. The only
current candidates to be absolutely undecidable, like CH (Cantor’s Continuum
Hypothesis), are third-order arithmetical, not yet first-order. The anti-realist
camp doesn’t have a single coherent neat ideology spelt out, which of course
doesn’t make anti-realists wrong.

In the arithmetical realism’s view, the metamathematical subtleties are usu-
ally dismissed as ‘epistemological difficulties’ that are irrelevant to the question
of ‘objective’ truth or falsity of arithmetical statements. It recklessly proclaims:
“We may know that nobody will ever know which of the two possibilities ϕ or
¬ϕ is true, but nevertheless one of them is true and its negation is false.” For
no reason at all.

Arithmetical realism claims existence of a winning strategy in every Dio-
phantine game, but this is just an empty useless claim, an application of the
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law of excluded middle, with no serious mathematics behind it. In this sense,
we shall treat the alleged “theorem” of the necessary existence of a winning
strategy for one of the players, in its full generality (for all p), as problematic,
empty of content and mathematically meaningless. However, of course there
are many examples of concrete polynomials p with a genuine concrete winning
strategy for one of the players in the game on p, accompanied by a mathemat-
ical proof. Just that this strategy will come from analysing p and proving a
theorem, not from some dodgy philosophy or the blind application of the law
of excluded middle.

5 ‘Computable winning strategy’ is vague too

The second, still not sufficient, in full generality, as we shall see, attempt to
define ‘can win’ comes from the notion of an algorithm and of a ‘computable
winning strategy’. It may seem that if for one of the players there always existed
an algorithm would always, when needed, halt and compute the winning moves,
then we isolated the right notion, and got away from subtleties and vagueness
of the notion.

However, it was proved by Jones in [12] that for some concrete polynomial
expressions p, neither of the two players has a computable winning strategy
(see examples below). But this is only the beginning of our story of further
metamathematical subtleties.

We know that we can’t algorithmically recognize the “truth” of even one-
quantifier sentences (MDRP theorem, see [18]), let alone arbitrary arithmetical
sentences. We know that the halting problem for algorithms is algorithmically
undecidable. Only for some particular instances, concrete algorithms can come
accompanied by mathematical proofs (ideally – certified by an automatic proof-
checker) of their halting and of their correct performance.

6 Provably computable winning strategy

Suppose we give one of the players an algorithm and tell him that it works (that
is, computes the winning moves). How can he trust us? Perhaps he would first
be interested to produce a proof that this algorithm always halts and that
it indeed guarantees victory? What kind of proof-methods does he know?
Maybe IΣ1 or PA or Z2 or ZF or even some as-yet unknown methods? Will
he be able to provide the alleged computable winning strategy with a credible
proof that it works and guarantees victory? This is the main topic of this
note: how metamathematical intricacies related to unprovability and potential
discovery of arithmetical absolute unprovability (Arithmetical Splitting) affect
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Diophantine games.
However, let us not hurry and move step by step. Let us study a few ex-

amples of concrete Diophantine games and analyse “existence of a strategy”,
“existence of a computable winning strategy”, “existence of a provable win-
ning strategy” and the question of dependence or independence of existence of
strategies on axiomatic theories (mathematical methods) that try to deal with
them.

7 Simple introductory examples

Let me first give some simple examples of Diophantine games, where “ex-
istence” of a winning strategy for a particular player is equivalent to some
classical mathematical statements (proved or unproved). I am doing this to
illustrate “arithmetical completeness” of the class of all Diophantine games.
Arithmetical completeness means that any statement that can be written as
an arithmetical formula can also be written in the language of winning in a
Diophantine game.

1) Infinitude of primes means that Player Y wins in the game

∀x1 ∃y1 ∃y2 ∀x3 ∀x4 ∃y4

(y1 − x1 − y2 − 2)2 + (x3 · x4 − y1 − y4 − 1)2 · (x3 − 1)2 · (x4 − 1)2 = 0.

Notice the sloppiness of notation, which we shall maintain as convention for
interpreting the symbol of subtraction. What if in the above formula x3 hap-
pened to be 0, so x3 − 1 would be negative, while our variables range over
non-negative integers? Squaring saved us, and we shall often use this conven-
tion as a shorthand instead of modifying the polynomial to its pedantically
correct form.

2) Irrationality of
√

5 is existence of a winning strategy for Player X in the
following game.

∀y1 ∀y2 (y1 + 1) · (y2 + 1) · (y2
1 − 5y2

2)2 6= 0.

Any strategy is winning for Player X in this game because his moves don’t
appear in the polynomial and hence don’t count.

3) The Twin Prime Conjecture can be written in the form that Player Y
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wins in, say, the following Diophantine game.

∀x1 ∃y1 ∃y2 ∀x3 ∀x4 ∃y4 ∀x5 ∀x6 ∃y6(
y1 − x1 − y2 − 2

)2
+
(
x3 · x4 − y1 + y4 + 1

)2 ·
(
x3 − 1

)2 ·
(
x4 − 1

)2
+

+
(
x5 · x6 − (y1 + 2) + y6 + 1

)2 ·
(
x5 − 1

)2 ·
(
x6 − 1

)2
= 0.

4) The area of the unit circle is bigger than 3.1415 can be written as
existence of winning moves for Player Y in a Diophantine game. Let us formu-
late it as follows: “there is a large enough n such that the grid of squares 1

n×
1
n

in the upper-right quarter-circle sums up in area to more than 0.7856”. So, we
simply have to count the number of ordered pairs of natural positive numbers
〈a, b〉 such that a2 + b2 ≤ n2. (Clearly, such pairs represent all upper-right
corners of the relevant squares.) Here is a quick clumsy Diophantine victory
saying this.

∃y1 ∃y2 ∃y3 ∃y4 ∀x5 ∃y5 ∀x6 ∃y6 ∀x7 ∃y7 ∃y8 ∃y9 ∃y10 ∃y11 ∃y12 ∃y13 ∃y14[
y3−y5 ·(y4+1)−1

]2

+

[
y3−y6 ·(y4 ·(x5+1)+1)−y7

]2

+

[
y7+y8−y4 ·(x5+1)

]
+

+

[(
2(x5 +1)− (x6 +x7)2−3x6−x7

)2

+

(
(x6 +1)2 +(x7 +1)2 +y9 +1−y2

1

)
+

+

(
y3 − y10 · (y4 · (x5 + 2) + 1)− y7 − 1

)2
]2

×

×

[(
[2(x5 + 1) − (x6 + x7)2 − 3x6 − x7]2 − y11 − 1

)2

·
(
y2

1 + y9 + 1 − (x6 +

1)2 − (x7 + 1)2

)
+

+

(
y3 − y10 · (y4 · (x5 + 2) + 1)− y7

)2
]2

+

[
y3 − y12 · (y4 · y2

1 + 1)− y2

]2

+

+

[
y2 + y13 − y4 · y2

1

]
+

[
1000 · y2 − 7854− y14

]2

= 0.

With enough practise one quickly learns to translate most kinds of mathemat-
ical assertions into the language of winning in particular Diophantine games.
It is easy to express “the derivative of lnx is 1

x” or “there are exactly five Pla-
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tonic solids in R3” and many other, sometimes unexpected, sentences. These
translations are not necessarily interesting or useful, especially with currently
available coding techniques. However, we study winning in Diophantine games
here, and I wanted to illustrate their “arithmetical completeness” and the giant
expressive power that comes with it.

8 Does provability of a winning strategy make a dif-
ference?

Let p(x1, y1, x2, y2, x3, y3) = (y1 + x2)2 + 1− (y2 + 2) · (y3 + 2). (Here, x1 and
x3 are dummy variables.) Clearly, Player X (who tries to make p 6= 0) ‘can’
win or ‘has’ a (computable) winning strategy if and only if there are infinitely-
many primes of the form m2 + 1 (which is the as-yet unproved and unrefuted
Landau’s Conjecture). Assuming Landau’s conjecture (as ‘true’, regardless
of provability considerations), here is Player X’s ‘truly computable’ winning
strategy. Set the dummy variable x1 = 0 and receive the opponent’s move y1.
Start the following unbounded search process: checking, successively, primality
of all numbers (y1 + 1)2 + 1, (y1 + 2)2 + 1, . . ., until, by Landau’s statement,
eventually encountering a prime number (y1 + n)2 + 1. Set x2 = n and notice
that regardless of the subsequent values y2 and y3 chosen by Player Y, the
value of p is different from 0, hence Player X wins.

Now, suppose that Landau’s Conjecture has been proved in some good the-
ory T . Will this knowledge give Player X extra information about his game?
Yes. Consider the class of all T -provably computable functions. Then, in-
stead of the potentially unbounded search for x2, Player X can be equipped
with a T -provably computable function f extracted from the proof of Landau’s
Conjecture in T such that his search for x2 can be restricted to checking pri-
mality of only finitely-many, namely ≤ f(y1)-many, natural numbers. Hence
his “theoretical computable winning strategy” can be converted into a proper
T -provably winning strategy by modifying the unbounded search condition for
x2 by adding the upper bound on the search.

Now, suppose (in the ‘real world’) a strong negation of Landau’s Conjecture,
that is, that we are given the actual biggest prime number p∗ of the form m2+1.
Here is the computable winning strategy for Player Y. Ignore X’s first dummy
move x1 and, knowing the last prime value p∗ = m2 +1, set y1 = (m+1). Now,
regardless of X’s move x2, the number (y1 + x2)2 + 1 will be composite and
Player Y can choose its divisors (y2 +2) and (y3 +2) undisturbed. Clearly, this
is a ‘truly’ computable winning strategy, but would there ‘exist’ a computable
strategy without the a priori knowledge of the value p∗? It depends on your
understanding of the word ‘exist’. Consider the family of strategies indexed
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by primes of the form p = m2 + 1, where the strategy with index p is defined
as Player Y’s strategy above, with p in place of p∗. Assuming the ‘truth’
(regardless of provability) of the negation of Landau’s Conjecture, this is a
finite set, and its final element is a concrete computable winning strategy (so -
yes, it ‘exists’ somewhere), although we never know just on the basis of ‘falsity’
of Landau’s Conjecture, which number p is the index of that final element (so
- no, the computable winning strategy ‘doesn’t practically exist’).

Here, we came to distinguish the ‘existence’ of a computable winning strat-
egy from ‘knowing’ a computable winning strategy. In the above argument
“there exists” a concrete algorithm, a computable winning strategy for Player
Y, but he can’t find it without knowing the “key” p∗, even though he knows
that there are finitely many strategies to choose from. We shall encounter
upper bounds for winning moves search again later.

Now suppose that the strong negation of Landau’s conjecture has been
proved in some good theory T , that is, for some numeral m∗, T proves “∀m >
m∗ (m2 + 1 is composite)”. Then, since this is a Π0

1 formula, the Player Y’s
computable winning strategy above is T -provably computable in all theories
T , even in T = I∆0, and is thus absolute (not depending on T ), contrasting
with the situation with Player X’s T -provably winning strategy, which is T -
sensitive. This example illustrated relativity and absoluteness of ‘existence’ of
provably winning strategies as depending on quantifier complexity of a given
Diophantine game.

9 Past examples of Diophantine games by Jones

Remember that any axiomatic theory based on classical logic will blindly con-
clude that “one of the players has a winning strategy” by classically deducing
the A or not-A without even looking at the game represented by A, a mathe-
matically meaningless gesture.

Let us first briefly discuss the old results by Jones [12] before introducing
our new material.

Fact 1.

A problem of algorithmic decidability or undecidability. Inputs are all possible
polynomial expressions p(x1, y1, x2, y2) defining all possible Diophantine games
of length 4. There is no algorithm to decide which of the two players ‘has’ a
winning strategy in a given Diophantine game.

I am not aware whether whether this is the strongest form of this theorem
nowadays. It relies on the best-available representation of enumerable sets by
polynomial equations (or non-equalities) with quantifier-prefixes.
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However, one can go beyond the question of existence of a decision al-
gorithm for many polynomials and present one single polynomial with this
property.

Fact 2.

For some natural number n, neither of the two players has a computable win-
ning strategy in the Diophantine game defined by the following polynomial
expression.{
n + x4 + 1− y3

}
·

{〈
(x4 + x5)2 + 3x5 + x4 − 2y3

〉2

+

+

〈[
(y7 − x5)2 + (y8 − x7)2

]
·
[
(y7 − x4)2 + (y8 − x6)2 ·

(
(y3 − n)2 + (y8 − x7 −

x1 − y1)2
)]
×

×
[
(y7− 3y3)2 + (y8−x6−x7)2

]
·
[
(y7− 3y3− 1)2 + (y8−x6 ·x7)2

]
−x9− 1

〉2

×

×

〈[
y8 + x9 + x9 · y7 · x3 − x2

]2
+
[
y8 + x10 − y7 · x3

]2
〉}

.

The deficiency of this example is that we don’t know the value of the number
n that does the work, and we have no idea where it sits. However, there are
examples without this drawback, also from Jones.

Fact 3.
In the following Diophantine game, neither player has a computable winning
strategy.{{

x1 + x6 + 1− y4
}2 ·{〈(x6 + x7)2 + 3x7 + x6 − 2y4

〉2
+

〈[
(y9 − x7)2 + (y10 − x9)2

]
×

×
[
(y9 − x6)2 + (y10 − x8)2 ·

(
(y4 − x1)2 + (y10 − x9 − y1)2

)]
·
[
(y9 − 3y4)2 + (y10 − x8 − x9)2

]
×

×
[
(y9−3y4−1)2+(y10−x8x9)2

]
−x12−1

〉2

+

〈[
y10+x12+x12y9x4−x3

]2
+
[
y10+x13−y9x4

]2〉}
−

−y13 − 1

}
·
{
x1 + y5 + 1− x5

}
·
{〈

(y5 − y6)2 + 3y6 + y5 − 2x5
〉2

+

〈[
(x10 − y6)2 + (x11 − y8)2

]
×

×
[
(x10 − y5)2 + (x11 − y7)2 ·

(
(x5 − x1)2 + (x11 − y8 − x2)2

)]
·
[
(x10 − 3x5)2 + (x11 − y7 − y8)2

]
×

×
[
(x10−3x5−1)2+(x11−y7y8)2

]
−y11−1

〉2

+

〈[
x11+y11+y11x10y3−y2

]2
+
[
x11+y12−x10y3

]2〉}
.
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Jones in [12] also shows (using enumerability of sets of consequences of a theory)
how for every theory T to construct a polynomial such that T can’t prove
that either of the two players in the corresponding Diophantine game can
always win. However, the polynomial involves a large coefficient CT which is
hard to find. All examples by Jones use, in various forms, representations of
enumerable sets by polynomials with quantifier prefixes. The battle for the size
of the polynomial is related to the battle for the size of the universal Turing
machine, a universal Diophantine equation or a smallest set of relations defining
a group with undecidable word problem. However, since multiple quantifiers
are allowed, there are trade-offs that can dramatically shrink the size of the
polynomial. Probably, as our knowledge of number theory grows, eventually,
new coding tricks will be discovered to compress the resulting polynomials to
excitingly short lengths.

10 Diophantine games without a provable winning
strategy

Every first-order arithmetical formula can be re-written into a prefixed poly-
nomial equation which means “Player Y can always win”. Equally easy is to
re-write any formula into a prefixed polynomial inequality which means “Player
X can always win”. By doing this to known unprovable statements, we obtain
Diophantine games, where existence of a winning strategy is unprovable.

Here is our first example of PH2, the Paris-Harrington principle for pairs.
Consider the statement

∀ m e ∃ N ∀ a b ∃ c d A X ∀ x y ∃ BCF ∃ hijk`npqrst

x ·(y+B−x) ·(A+m+B−y) ·((A+h−d)2 +((d+1) · i+A−c)2 +(B+n−dx)2+

+((dx+1)·j+B−c)2+(C+r−dy)2+((dy+1)·k+C−c)2+(B+s+1−C)2+(C+t−N)2+

+(F + p− b · (B + C2))2 + (a− ` · b · (B + C2)− F − `)2 + (X − F + eq)2) = 0.

It has been proved by the author and Michiel De Smet in [3] that this
statement is EFA- equivalent to PH2, and hence is unprovable in IΣ1. (The
equivalence is rather straightforward, using some elementary, rather coarse,
coding techniques.) Hence, introducing dummy variables to satisfy the defini-
tion of a Diophantine game, Player Y ‘can always win’ in the following game
but this is unprovable by primitive recursive methods. However, PH2, and,
hence, Player Y’s ability to win, is provable in IΣ2, thus requiring a complex
nested inductive argumentation. Let p1(x1, y1, . . . , x22, y22) be the following
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polynomial expression.

x8 ·(x9+y9−x8)·(y6+x1+y9−x9)·((y6+y12−y5)2+((y5+1)·y13+y6−y4)2+

+(y9+y17−y5·x8)2+((y5·x8+1)·y14+y9−y4)2+(y10+y20−y5·x9)2+((y5·x9+1)·y15+

+y10−y4)2+(y9+y21+1−y10)2+(y10+y22−y2)2+(y11+y18−x4·(y9+y2
10))2+

+(x3 − y16 · x4 · (y9 + y2
10)− y11 − y16)2 + (y7 − y11 + x2 · y19)2).

Theorem 10.1
In the Diophantine game corresponding to the polynomial expression

p1(x1, y1, . . . , x22, y22),

Player Y has an IΣ2-provably winning strategy, but has no IΣ1-provably win-
ning strategy.

Here is another example from [3], this time equivalent to PH3, the Paris-
Harrington principle for triples (again, the equivalence is quite straightforward)
hence unprovable in IΣ2 but provable in IΣ3.

Theorem 10.2
The following statement is equivalent to PH3 and therefore also to the 1-
consistency of IΣ2. In particular, it is not provable in IΣ2 but is provable
in IΣ3.

∀ m e ∃ N ∀ a b ∃ c d A X ∀ xyz ∃ BCD F ∃ hijk`npqrstuvw

x ·(y+B−x) ·(z+B−y) ·(A+m+B−z) ·((A+h−d)2 +(c−A− (d+1) · i)2 +(B+n−dx)2+

+(c−B−(dx+1)·j)2+(C+r−dy)2+(c−C−(dy+1)·k)2+(D+t−dz)2+(c−D−(dz+1)·u)2+(B+s+1−C)2+

+(C+v+1−D)2+(D+w−N)2+(F+p−b·(B+C2+D3))2+(a−F−`·b·(B+C2+D3)−`)2+(F−X+qe)2) = 0.

Rewriting it into a polynomial with the variables suitably renamed for a
Diophantine game, one obtains the following expression p2(x1, y1, . . . , x27, y27):

x8·(x9+y10−x8)·(x10+y10−x9)·(y6+x1+y10−x10)·((y6+y14−y5)2+(y4−y6−(y5+1)·y15)2+

+(y10+y19−y5·x8)2+(y4−y10−(y5·x8+1)·y16)2+(y11+y22−y5·x9)2+(y4−y11−(y5·x9+1)·y17)2+

+(y12+y24−y5·x10)2+(y4−y12−(y5·x10+1)·y25)2+(y10+y23+1−y11)2+(y11+y26+1−y12)2+

+(y12+y27−y2)2+(y13+y20−x4·(y10+y211+y312))2+(x3−y13−y18·x4·(y10+y211+y312)−y18)2+

+(y13 − y7 + y21 · x2)2).
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Theorem 10.3
In the Diophantine game defined by the polynomial expression p2(x1, y1, . . . , x27, y27),
Player Y can always win. This is not provable in IΣ2 but is provable in IΣ3.

In other words a 4-nested induction argument is required and unavoidable
to provably win in this game. Needless to say, 4-nested induction arguments
are unheard of in “real” mathematics. Remember the controversy with the
2-nestedness of the inductive argument in the original proofs of van-der Waer-
den’s theorem on arithmetical progressions, as well as the Hales-Jewett theorem
on the generalized game of naughts and crosses, which thus theoretically al-
lowed for the possibility of IΣ1 unprovability of these statements. (There were
even indications, coming from Furstenberg’s school’s dynamical proofs that
this must indeed be the case.) The controversy was eliminated by Saharon
Shelah in [23], who circumvented the perceived difficulty and came up with a
different inductive argument that doesn’t require a nested induction argument
at each inductive step. The readers may read the whole story in [23].

The manuscript [3] contains many other examples of polynomials with
quantifier-prefixes (and hence the statements of existence of winning strate-
gies) which are unprovable in ATR0, fragments of Z2 and even in ZFC plus
existence of n-Mahlo cardinals for each finite order n (building on arithmeti-
zations of deep unprovability results by Harvey Friedman [7]).

Let me mention at this stage that there is an article from as recently as the
1980s, by perfectly qualified logic experts, that openly doubted the possibility
of ever finding such short and clearly “feasible” unprovable statements in the
form of polynomial equations with quantifiers.

11 Winning strategies and binding sets

The source of the difficulty for both players in a Diophantine game comes from
the unboundedness of quantifiers involved in the statement

∃x1 ∀y1 . . . ∃xn ∀yn p(x1, y1, . . . , xn, yn) 6= 0

(‘Player X can win’) and in its negation

∀x1 ∃y1 . . . ∀xn ∃yn p(x1, y1, . . . , xn, yn) = 0

(‘Player Y can win’) and from “Gödelian” arithmetical completeness of poly-
nomials with quantifiers.

It would be already great for one of the players if he not necessarily knew
(or could compute) all the winning moves himself, but at least knew how far to
search in every given position, that is, existence of upper bounds on a winning
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answer as a function of the current position. This is the clear idea behind the
next definition.

Definition 11.1 Given a polynomial expression p(x1, y1, . . . , xn, yn), we say
that an infinite set A ⊆ N is binding for the Diophantine game on p if for all
a1 < a2 < · · · < a2n−1 < a2n and b1 < b2 < · · · < b2n−1 < b2n in A,

∀x1 < a1 ∃y1 < a2 . . . ∀xn < a2n−1 ∃yn < a2n p(x1, y1, . . . , xn, yn) = 0 ⇐⇒

⇐⇒ ∀x1 < b1 ∃y1 < b2 . . . ∀xn < b2n−1 ∃yn < b2n p(x1, y1, . . . , xn, yn) = 0.

Knowledge of an infinite binding set for p gives enormous playing power in
the Diophantine game on p.

Lemma 11.2 Let p be a polynomial and suppose we know a binding infinite
set A ⊆ N for the Diophantine game on p. Then we know which of the two
players is supposed to win from the knowledge of the first 2n elements of A.
More exactly,

N � ∀x1 ∃y1 . . . ∀xn ∃yn p(x1, y1, . . . , xn, yn) = 0 ⇐⇒

⇐⇒ N � ∀x1 < a1 ∃y1 < a2 . . . ∀xn < a2n−1 ∃yn < a2n p(x1, y1, . . . , xn, yn) = 0,

which is a bounded formula, hence algorithmically decidable.

The proof is clear.
Readers familiar with the Specker colouring (a computable colouring of

size-3 subsets of natural numbers without a computable infinite monochromatic
subset, namely 〈x < y < z〉 → 0 if every Turing machine below x halts within
y steps if and only if it halts within z steps, and → 1 otherwise) or with
Paris-Kirby indiscernibles (see [2] for a modern exposition) will notice the clear
analogy. Indeed, the definition of bindedness of A is a form of indiscernibility
(a crucial notion in unprovability proofs), and in our context of potentially
unbounded searches for winning moves, these indiscernibles serve as upper
bounds for these searches, turning infinite search into finite. So, a fundamental
notion from metamathematics in fact has a clear game-theoretic explanation.

Theorem 11.3 Suppose A ⊆ N is an infinite binding set for the Diophantine
game on p. Then the following hold.

1. We can compute the winning strategy for the winning player from the
oracle A.

2. In particular, if A is a computable set then we can write the winning
algorithm for the winning player explicitly, from the decision algorithm
for A. Moreover, the knowledge of the first 2n elements of A already
decides which of the players can guarantee victory.
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3. There are polynomials p such that the Diophantine game on p has no
infinite computable binding set.

4. Let n be a natural number. Then there exist polynomials p such that every
binding infinite set A for the Diophantine game on p computes 0(n).

The proof is clear.

12 A deadly PA-unprovable Diophantine zugzwang
with the possibility of inflicting unbounded log-
ical damage in revenge

A zugzwang is a position in which any move by a player worsens his situation. A
deadly zugzwang is a position where every move results in a losing position. In
games where players have only finitely-many possible moves, a deadly zugzwang
would be already a losing position. But in Diophantine games, unlike chess,
xiàngq́ı (象棋) or shōgi (将棋)), each player has infinitely-many possibilities
for a move.

It may seem paradoxical at first, but this is a common phenomenon in
logic when each instance ϕ(n) of a formula ϕ(x) is provable using some given
methods but the statement ∀x ϕ(x) is unprovable. Just that for each instance,
the proof is separate, and there doesn’t exist a uniform proof that would deal
with all infinitely-many instances.4

Now we shall describe an interesting Diophantine game. At the start, nei-
ther of the two players has a PA-provably winning strategy. However, any first
move by Player X will put him in an imminent PA-provably losing position.
Understanding this, Player X can, however, inflict arbitrarily large logical re-
source damage on his opponent, by his very first move x1. What do we mean
by “logical resource damage”? It means that in order to actually provably win,
Player Y would have to use arguments of unbounded high logical strength IΣn

(in the hierarchy IΣn of approximations of PA). And how high the needed n
is comes from the first move of Player X. He knows he is doomed but at least
he can exert some revenge and make Player Y struggle arbitrarily hard.

The game is based on the following theorem by the author and Michiel De
Smet [3], [4]. (Again, the translation can be done quite easily, with lots of
tricks, and I will not burden the reader with this long sequence of easy steps.)

Theorem 12.1

4Compare it with continuity and uniform continuity of functions in calculus. For contin-
uous functions, for each separate ε, there exists its own δ, but in uniform continuity there is
a δ that suits all εs.
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Consider the following statement Φ(n) with one free variable n. For every
n > 1, the statement Φ(n) is equivalent to the Paris-Harrington Principle in
dimension n and hence to the 1-consistency of IΣn−1. In particular, ∀ n Φ(n)
is equivalent to PH and hence to the 1-consistency of full Peano Arithmetic.
Therefore ∀ n Φ(n) is unprovable in Peano Arithmetic.

∀ m e ∃ N ∀ a b u v ∃ str STR αβγδερτ ∀ i j ∃k`BCσΣpPQU ΩMxyzw∆E FGK HLZ XW

{[s− t− r − 1]2 + [S − T −R− 1]2 + [i · (i− p− n− 1) · ([s− σ − Σ(it+ 1)]2 + [σ + w − it]2+

+[S − C − z(iT + 1)]2 + [C + Ω− iT ]2 + [σ +B + 1− C]2)] · ([a− α− β((t+ s2)b+ 1)]2+

+[α+ γ − (t+ s2)b]2 + [a− δ − ε((T + S2)b+ 1)]2 + [δ + ρ− (T + S2)b]2 + [α+ τ + 1− δ]2]}·
·{i · (j +B − i) · (r +m+ C − j) · [[s− r − x(t+ 1)]2 + [r + `− t]2 + [s−B − σ(ti+ 1)]2+

+[B + w − ti]2 + [s− C −M(tj + 1)]2 + [C + y − tj]2 + [B + z + 1− C]2 + [C + Ω−N ]2]2+

[i · (n + p+ 1− i) · k · (r +m+ E − k) · (u+ Σ− v) · [[u− F −G(iv + 1)]2 + [F +K − iv]2+

+[s−H − L(tk + 1)]2 + [H + Z − tk]2 + [u− P −Q((i+ 1)v + 1)]2 + [P + U − (i+ 1)v]2+

+[P+X−F ]·[(H−P )2−W−1]]·[[a−α−β((v+u2)b+1)]2+[α+γ−(v+u2)b]2+[α−S−τ ·e]2]]2} = 0.

Let us rewrite this statement to be equivalent to “Player Y can always win”
in a certain Diophantine game by renaming the variables. It is crucial for our
example that n becomes Player X’s first move x1. Let q(x1, y1, . . . , x46, y46) be
the following polynomial expression.

{[y7−y8−y9−1]2+[y10−y11−y12−1]2+[x20 ·(x20−y27−x1−1) ·([y7−y25−y26 ·(x20 ·y8+1)]2+

+[y25+y36−x20 ·y8]2+[y10−y24−y35 ·(x20 ·y11+1)]2+[y24+y31−x20 ·y11]2+[y25+y23+1−y24]2)]·

·([x4−y13−y14 ·((y8+y27)·x5+1)]2+[y13+y15−(y8+y27)·x5]2+[x4−y16−y17 ·((y11+y210)·x5+1)]2+

+[y16+y18−(y11+y210) ·x5]2+[y13+y19+1−y16]2]} ·{x20 ·(x21+y23−x20) ·(y9+x2+y24−x21)·

·[[y7− y9− y33(y8 + 1)]2 + [y9 + y22− y8]2 + [y7− y23− y25 · (y8 ·x20 + 1)]2 + [y23 + y36− y8 ·x20]2+

+[y7−y24−y32 · (y8 ·x21 + 1)]2 + [y24 +y34−y8 ·x21]2 + [y23 +y35 + 1−y24]2 + [y24 +y31−y3]2]2+

+[x20 ·(x1 +y27 +1−x20) ·y21 ·(y9 +x2 +y38−y21) ·(x6 +y26−x7) ·[[x6−y39−y40 ·(x20 ·x7 +1)]2+

+[y39 + y41 − x20 · x7]2 + [y7 − y42 − y43 · (y8 · y21 + 1)]2 + [y42 + y44 − y8 · y21]2+

+[x6−y28−y29 ·((x20+1)·x7+1)]2+[y28+y30−(x20+1)·x7]2+[y28+y45−y39]·[(y42−y28)2−y46−1]]·
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·[[x4 − y13 − y14 · ((x7 + x26) · x5 + 1)]2 + [y13 + y15 − (x7 + x26) · x5]2 + [y13 − y10 − y19 · x3]2]]2}.

Here is the explanation of this situation in simpler words: PA-unprovability
of winning for either player at the start, being a deadly zugzwang for Player
X, with logically unbounded revenge. Suppose both players have Peano Arith-
metic as their weapon. At the beginning of the game neither of the two players
has a PA-provably winning strategy because the statement of Player Y’s ability
to always win is equivalent to PH, hence is PA-unprovable. But once Player X
has chosen his first move x1, he will make the instance of the statement “Player
Y can win the game from the position x1” equivalent to PHx1 , hence provable
in PA, and even in IΣx1+1. Player X will lose but he can nevertheless impose a
vengeful penalty for his loss by choosing an arbitrarily-large x1. The larger the
value of x1 - the more logical power Player Y has to use to extract the winning
moves, namely, he will have to use at least the strength of IΣx1+1-proofs (that
is, at least (x1 + 2)-nested inductive arguments) to provably win.

Theorem 12.2 (Deadly zugzwang with unlimited revenge possibility.)

In the Diophantine game defined by the polynomial q above, neither player has
a PA-provably winning strategy. However, any first move by Player X puts
Player Y in a PA-provably winning position. However, Player X can revenge
in advance by setting x1 arbitrarily large, hence making existence of a winning
strategy for Player Y IΣx1-unprovable.

13 Some games in logic

The game-theoretic paradigm grew to become one of the few ingredients per-
meating all corners of former “mathematical logic”. I will list a few famous
examples, but the list is far from complete. The purpose of this list is to
stimulate interest and catalyse further mutually-enriching connections between
games and logic.

1. For a systematic presentation of games in model theory and parts of
algebra, see Hodges [10]. For another assortment of games in model
theory, one may also consult Väänänen [29].

2. The game paradigm is now central in classical computability theory. See
Rabin [22], Lachlan [17], Kummer [16], Soare [26].

3. In set theory, several games are of fundamental importance: full Axiom
of Determinacy (that implies existence of sharps of all reals), Projective
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Determinacy and its consequences, Analytic Determinacy, Borel Deter-
minacy. There are games for sharps (the Martin-Harrington Theorem),
see Kanamori [13], there is the Solovay’s game that turns the club fil-
ter on ω1 into an ultrafilter (making ω1 measurable) and related games.
Many forcing constructions can be set up as games. There are Choquet
games, Banach-Mazur games, game quantifiers, ∗-games, Wadge games,
Separation games, Cantor-Bendixon games, meager-comeager games and
many more. See Kechris [15] or Kanovei, Sabok, Zapletal [14].

4. Games are at the heart of metamathematically-sensitive Ramsey theory.
For example, the Hales-Jewett theorem was first formulated as a gener-
alized game of naughts and crosses. Paris-Kirby indicator games can be
seen as games for largeness (of a piece of a partition). Similarly the Clote
game. The now-famous Hercules versus Hydra battle is a game, as well
as its cousin, unjustly less famous, but much harder to kill, the Bucholtz
Hydra. There are experts, in the now-esoteric subject called “proof the-
ory” who understand why termination of the Hydra battle, “Gentzen’s
cut-elimination” and well-orderedness of ordinal notations up to the or-
dinal ε0 are actually one and the same statement of termination of the
same game, just cast in slightly different terms.

5. Many combinatorial forcing constructions also can be viewed as games,
for example in Nash-Williams theory. See Todorcevic’s [27], [28] as well
as the important games one can find in Halbeisen [9]. There are games
of domino and tiling games (to tile the plane or the space, possibly in
higher dimensions), probably with most fascinating as-yet undiscovered
metamathematics.

6. There are “games for truth” and games to build a nonstandard model.
Classical theorems: omitting types, arithmetized completeness, various
compactness principles and recursive saturation can all be described as
games: one player tries to build an infinite Henkinized branch in a
tree, while the other player tries to block any emerging candidate for
a branch. Which of the players can guarantee victory of course depends
on the conditions of the theorem in question: consistency of a theory,
non-principality of a type, etc.

7. In the analysis of predicativity, there are games of length (which player
can build a longer well-ordering) and their cousins played on linear orders
or on well-founded trees. See Simpson’s [24] and Kechris’s [15].

8. Many large cardinals affect games that happen deep below them. There
are Ramsey games, van der Waerden games, Schur games. There are
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games for minor-embeddings and games for indiscernibles, games for
ordinal-indiscernibles and games for ordinal L-indiscernibles.

9. There is a recent series of deep results about slices of Determinacy by
Montalbán and Schore [20]. Also, by now, we have achieved an un-
derstanding of the correspondence between the slices of Determinacy
and slices of the infinite-dimensional Ramsey theorem ω → (ω)ω2 . (The
best exposition is in [24].) However, as of today (2021), the question of
whether the full AD implies ω → (ω)ω2 remains open.

This list is just a fraction of what is going on. Literally, every corner of
former “logic” is teeming with games. I propose that it could be very interesting
and mutually rewarding to connect these games with the mathematical games
that people play in Combinatorial Game Theory.
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